Limitations of Adaptable System Architectures for
WCET Reduction

Jack Whitham
April 21st 2008

@RTS/M

Limitations of Adaptable System Architectu April 21st 2008 1/19



@ Background

© WCET reduction process
© General problems

@ Conclusion

@RTS/M

Limitations of Adaptable System Architectu April 21st 2008 2/19



WCET reduction

Usually, system architects aim to:

e Minimize average case execution time (ACET) of software:
maximizing typical performance.

But hard real-time system architects aim to:

@ Minimize worst-case execution time (WCET) of software: maximizing
guaranteed performance.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 3/19



My topic

o WCET reduction of a program,
@ preferably automatic,

o preferably using a conventional programming language.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 4/19



ACET vs WCET

ACET optimizations are relatively easy to implement:
@ Performance analysis is simple: use profiling.

@ Predictability isn't important provided that average performance is
good.

@ = Heuristic mechanisms can be used.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 5/19



ACET vs WCET

WCET optimizations are relatively hard to implement:
o WCET analysis is tricky.

e Must model the program.
e Must model the CPU and system architecture.

@ Predictability is important.
o Predictability simplifies the models.
o Predictability reduces pessimism.

@ = Heuristic mechanisms should be avoided.

RTS /s«

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

6/19



CPU designs

Conventional CPU designs are good for ACET reduction, but not WCET
reduction, because of:

@ caches,

@ superscalar out-of-order execution,

@ branch prediction,

o generally, clever but unpredictable techniques.

All heuristic mechanisms! Analysis is possible but costly and pessimistic.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 7/19



Generalized WCET reduction process

real—time task

repeat: identify WC path

resource cost

allocate resources
for WCET reduction

select allocations to
minimise task WCET
within resource limit

allocations mapped to
memories/computing resources

@RTS/U&

Limitations of Adaptable System Architectu April 21st 2008 8/19



WCET reduction process

Examples

Adaptable and reconfigurable systems could implement
predictable mechanisms to minimize WCET.
For example, code can be accelerated by:
@ Co-processor modules, loaded by run-time reconfiguration.
@ Scratchpad memory, loaded at run-time.

@ Custom microprograms, loaded at run-time.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 9/19



WCET reduction process

Example: custom microprograms

— BB0

= BB0

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu

BB1

BB2

BB3

=)

BB6 =

\

N\

BB4

BB5

/

Trace
formation

BB1+BB2+BB3

BB4

BB5

S

BB6 —

“~— Trace exits

April 21st 2008 10 /19



WCET reduction process

Results: custom microprograms

Total gain versus SP, %

April 21st 2008

11/ 19



General problems

All implementations will be subject to these limits:
© Instruction level parallelism (ILP) limit.
@ Load cost limit.

© General purpose architecture limit.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

12 /19



ILP limit

Applies if you want to reduce the WCET of code written
programming language (e.g. C).

40%
35%
30%
25%
20%

15%

% WCET reduction

10%

5%

0%
sha blowfish

Program
G-

Jack Whitham () Limitations of Adaptable System Architectu

in a conventional

L)
|3
04

April 21st 2008

13 /19



ILP: Problems and Solutions

Caused by:
@ Control flow (branches).

@ Data dependences introduced by the compiler.

© Data dependences introduced by the problem requirements.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

14 /19



ILP: Problems and Solutions

Caused by:
@ Control flow (branches).

o Addressed by dynamic speculation.

@ Data dependences introduced by the compiler.

© Data dependences introduced by the problem requirements.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

14 /19



ILP: Problems and Solutions

Caused by:
@ Control flow (branches).

o Addressed by dynamic speculation.
o Addressed by static speculation.

@ Data dependences introduced by the compiler.

© Data dependences introduced by the problem requirements.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

14 /19



ILP: Problems and Solutions

Caused by:
@ Control flow (branches).

o Addressed by dynamic speculation.
o Addressed by static speculation.

@ Data dependences introduced by the compiler.
o Partly addressed by memory speculation and register renaming.

© Data dependences introduced by the problem requirements.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

14 /19



ILP: Problems and Solutions

Caused by:
@ Control flow (branches).

o Addressed by dynamic speculation.
o Addressed by static speculation.

@ Data dependences introduced by the compiler.

o Partly addressed by memory speculation and register renaming.
o Real solution: improved programming languages (e.g. support for
vectorisation).

© Data dependences introduced by the problem requirements.

% RTS/sx

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

14 /19



ILP: Problems and Solutions

Caused by:
@ Control flow (branches).

o Addressed by dynamic speculation.
o Addressed by static speculation.

@ Data dependences introduced by the compiler.

o Partly addressed by memory speculation and register renaming.
o Real solution: improved programming languages (e.g. support for
vectorisation).

© Data dependences introduced by the problem requirements.
e Unavoidable.

% RTS/sx

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

14 /19



Load cost limit

Applies if you want to load instructions (or data) into a scratchpad (or
FPGA). Necessary to make best use of limited on-chip memory.

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

/ne
0.00 optimal

256 512 1k 2k 4k 8k 16k 32k 100k

@RTS/mk

B 0L imitations of Adaptable System Architectu April 21st 2008 15 / 19

Normalised WCET




Load cost: Problems and Solutions

Caused by:
© Limited space in on-chip memory.

@ Cost of transferring data.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

16 / 19



Load cost: Problems and Solutions

Caused by:
© Limited space in on-chip memory.
o Addressed by dynamic loading.

@ Cost of transferring data.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

16 / 19



Load cost: Problems and Solutions

Caused by:
© Limited space in on-chip memory.

o Addressed by dynamic loading.
o Addressed by static loading (overlaying).

@ Cost of transferring data.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

16 / 19



Load cost: Problems and Solutions

Caused by:
© Limited space in on-chip memory.

o Addressed by dynamic loading.
o Addressed by static loading (overlaying).

@ Cost of transferring data.
o Addressed by burst transfers.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

16 / 19



Load cost: Problems and Solutions

Caused by:
© Limited space in on-chip memory.

o Addressed by dynamic loading.
o Addressed by static loading (overlaying).

@ Cost of transferring data.

o Addressed by burst transfers.
o Addressed by compression.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

16 / 19



General purpose architecture limit

real—time task

repeat: identify WC path

resource cost

allocate resources
for WCET reduction

select allocations to
minimise task WCET
within resource limit

allocations mapped to

memories/computing resources
RTS/s«

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008

17 /19



General purpose architecture limit

A choice: either,

@ Write programs in a conventional programming language for a general
purpose architecture,

or,
o Write programs that use application-specific hardware.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 18 /19



General purpose architecture limit

A choice: either,

@ Write programs in a conventional programming language for a general
purpose architecture,

o Limited by ILP.
or,
o Write programs that use application-specific hardware.

@RTS/M

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 18 /19



General problems

General purpose architecture limit

A choice: either,

@ Write programs in a conventional programming language for a general
purpose architecture,

o Limited by ILP.
or,

o Write programs that use application-specific hardware.
o WCET reduction search is difficult (co-design).

'RTS /ot

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 18 /19



General problems

General purpose architecture limit

A choice: either,

@ Write programs in a conventional programming language for a general
purpose architecture,

o Limited by ILP.
or,

o Write programs that use application-specific hardware.

o WCET reduction search is difficult (co-design).
e Manual hardware design may be required.

 RTS/

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 18 /19



Conclusion

Conclusion

For WCET reduction, tradeoffs exist between:

@ Conventional languages versus specialist languages.

@ Loading costs versus on-chip memory sizes.

© General-purpose versus application specific architectures.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 19 /19



Conclusion

Conclusion

For WCET reduction, tradeoffs exist between:
@ Conventional languages versus specialist languages.
@ Loading costs versus on-chip memory sizes.

© General-purpose versus application specific architectures.

@ My own work has explored the first two.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 19 /19



Conclusion

Conclusion

For WCET reduction, tradeoffs exist between:
@ Conventional languages versus specialist languages.
@ Loading costs versus on-chip memory sizes.

© General-purpose versus application specific architectures.

@ My own work has explored the first two.

@ There is plenty of scope for future work.

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 19 /19



Conclusion

Conclusion

For WCET reduction, tradeoffs exist between:
@ Conventional languages versus specialist languages.
@ Loading costs versus on-chip memory sizes.

© General-purpose versus application specific architectures.

@ My own work has explored the first two.

@ There is plenty of scope for future work.

@ Questions?

Jack Whitham () Limitations of Adaptable System Architectu April 21st 2008 19 /19



	Outline
	Background
	WCET reduction process
	General problems
	Conclusion

