Using Hardware Methods to Improve
Time-predictable Performance In
Real-time Java Systems

Jack Whitham, Nell Audsley, Martin Schoeberl

University of York, Technical University of Vienna

Hardware Methods

« Lightweight, Java-friendly co-processors.

* A hardware method replaces software functionality with
application-specific co-processor hardware.

e Benefits:
— Higher performance
— Time-predictable operation
— Energy savings

Implementations

 Hardware methods have been implemented for JOP.

— The JOP CPU is a WCET-friendly platform, good for
demonstrating time-predictability advantages of co-processors.

— The JOP CPU and the co-processors exist in the same FPGA.

* A second implementation of hardware methods for PC
hardware is currently being developed.
— Co-processors are implemented on a PCI Express FPGA card.

Co-processors and Java (1)

e Java isn’t designed for direct hardware access, but it is
possible, e.g. using:
— RawiMenor yAccess [13]
— Hardware Objects for Java [29]

 These approaches allow memory-mapped registers to
be read and written.

 This is a low-level interface that breaks Java
abstractions such as “objects” and “methods”.

Co-processors and Java (2)

* A Java co-processor interface should be more like the
Java Native Interface (JNI).

— It should hide the low-level detalils of software to
hardware communication.
* This helps with code maintenance, portability and reuse.

— The interface should preserve Java abstractions as
far as possible (methods, objects, variables...)
* This makes the interface easy to use.
« Just call a method to make use of a co-processor.

Issues

How is the data within an object shared between
hardware and software?

How is the structure of an object shared between
hardware and software?

Should a co-processor be able to call software methods?

How Is the data within an object shared between
hardware and software?

* Most co-processors act on vectors, not scalar data, this
needs to be shared between producer and consumer.

e Options include:

— A single memory space is shared by
both co-processors and CPUSs.

— The CPU memory space is accessed by
the co-processors via a bridge.

— Objects are copied to scratchpad memory
local to each co-processor during setup.

 The JOP implementation of hardware methods uses a
single memory space.

How Is the structure of an object shared
between hardware and software?

In Java, the memory layout and location of an object is
defined by the JVM.

Options include:

— Moving the JVM'’s object management functionality into
a co-processor, so that both hardware and software have
a single point of reference [8].

— Using JNI to translate objects into a format accessible
from C, since the layout of C structures is well-defined [6].

— Route all memory accesses via the JVM [30].

The JOP implementation of hardware methods uses
special bytecodes to determine the memory locations of
objects.

Should a co-processor be able to call software
methods?

This would be a powerful mechanism for sending data
and messages between a co-processor and software.

Implications:

— The JVM must wait for messages from the
co-processor, other than “completion”.

— Co-processors need to be able to act as “masters”
and cannot be simple reactive components.

The “hardware thread interface” mechanism uses a
proxy thread for this purpose [30].

— However, we are unconvinced that the extra complexity is
worthwhile.

The JOP implementation omits this functionality.

Hardware Methods for JOP (1)

Method calls Hardware
Java /l Interface classes
application <. for co-processors
Co-processor
/=
Software Interface hardware for
CO-pProcessor
| Interface Hardware 75
IDL code | generator Objects for
Java
Interface
SimpCon Control channel
K interface interface (CCI)
ey H
User-defined component JOP CPU

N

Generated component Optional: Other co-processors

and CPU cores

. Provided component

Hardware Methods for JOP (2)

Java
application

Software

Method calls Hardware
Interface classes

for co-processors

Co-processor

Intarfare hardware far

IDL code

Key

User-defined ca

Generated com

. Provided compq

The interface class translates a Java operation (method call)
iInto a co-processor operation. Example:

public class mac_coprocessor {
public static nmac_coprocessor getlnstance();
public int macl (int size,

int[] alpha, int[] beta);

Hardware Methods for JOP (3)

The interface hardware tells the co-processor

what to do, via a series of VHDL/Verilog wires.

The wire values are derived from the
parameters given to the method. Example:

entity mac_coprocessor _ |f is port (

cl k : in std_|ogic;

reset : in std_| ogic;

nmet hod_nmacl paramsize : out vector(31 downto 0);
nmet hod_nmacl param al pha : out vector (23 downto 0);
nmet hod_nmacl param beta : out vector(23 downto 0);
nmet hod_nmacl return . in vector (31 downto 0);
net hod nacl start . out std_logic;

nmet hod_nmacl _runni ng : in std_|ogic;

cc_out _data . out vector(31 downto 0);
cc_out _wr . out std_logic;

cc_out _rdy : in std_|ogic;

cc_in_data . in vector (31 downto 0);
cc_in_w : in std_|ogic;

cc_in_rdy : out std logic);

end entity mac coprocessor if;

Hardware

Co-processor

Interface hardware for
CO-processor

ﬁ

Control channel

interface (CCI)

7
Optional: Other co-processors

and CPU cores

Hardware Methods for JOP (4)

Hardware

Co-processor

Interface hardware for
CO-processor

Method calls
Java Interface classes
application for co-processors
Software
Interface Hardware
IDL code | .
generator Objects for
Java
Interface

ﬁ

Both the interface software and the interface
hardware are automatically generated from
interface description language (IDL) code. Example:

COPROCESSOR nmac_coprocessor
METHOD nacl

PARAMETER si ze 1 nt
PARAMETER al pha int[]
PARAMVETER beta int[]

RETURN i nt

Control channel

interface (CCI)

7
Optional: Other co-processors

and CPU cores

Calling a hardware method

Flow of execution

—

User-defined Java method

—

1

Co-processor interface class method (e.g. mac_coprocessor.macl)

Convert Activate co- . . Convert
Wait for completion
parameters processor return value
Phase 2
Phase 1 Run Phase 3

Set up co-processor

Time

%

Co-processor running

Retumn to Java

Implementing a hardware method

Control
channels

cc_in data

32

cc_in wr/rdy

Control channel
interface (CCI)

cc_out data

32

cc out wr/rdy

SimpCon
Interface

JOP CPU

Memory bus interface

Generated interface

hw for co-processor

method macl param size

mac_coprocessor

32

method macl param alpha

24

method macl param beta

24

method macl param start

% macl hardware

method macl param return

method
Y

i

32

method macl param running

N\

Key

User-defined component

Generated component

. Provided component

Memory bus interface

Features

Details of the hardware/software interface
are hidden by the interface generator.

The user only needs to:
— Specify the interface using IDL code.

— Write a co-processor that receives parameters
(as VHDL/Verilog signals).

Using a co-processor is as simple as
it could possibly be.

WCET Analysis for
Hardware Methods (1)

« WCET = worst case execution time
— Maximum possible execution time for a program.

— JOP includes the WCA tool, which computes
a safe and tight WCET estimate.

* In software, improved performance often comes at the
cost of time-predictability.

— e.g. Less accurate WCET estimates,
or reduced average execution time, but increased WCET.

— This does not apply to co-processors!

WCET Analysis for

Hardware Methods (2)
|

—Ni

User-defined Java method P

Co-processor interface class method (e.g. mac_coprocessor.macl)

Set up co-processor

Convert Activate co- . . Convert
Wait for completion
parameters processor return value
Phase 2
Phase 1 Run Phase

Co-processor running

B

Return to Java

p Time

Point A

Point B

o Goal of WCET analysis for hardware methods:
compute maximum time between point A and point B.

WCET Analysis for
Hardware Methods (3)

N
Co-processor interface .macl)
Convert Activate co- Convert
parameters processor return value
Phase 1 Phase 3
Set up co-processor Return to Java

 Phases 1 and 3 are easily analysed.
« WCET depends only on software operations.

e The existing WCA tool for JOP
has all the required features.

WCET Analysis for
Hardware Methods (4)

face class method (e.g. mac_coprocessor .mad

Wait for completion

Phase 2
Run

Co-processor running

 Phase 2 depends on the hardware execution time.
* In software, a whi | e loop polls for completion.

WCET of Co-processor Hardware

 Assume the co-processor has a linear (i.e. O(n)) execution time.
e Model it using three constants, ki, k,, kj:

Time >
Hardware Per- Software
setup iteration setup
overhead overhead overhead

kl k2 k2 k2 k3

Co-processor Execution Time b

Total hardware method execution time E

K; IS the cost of phases 1 and 3 (computed by WCA).

K, IS derived by looking at the co-processor’s state machine;
how long does it operate on each data item?

K, IS whatever remains.

WCET of Software

public void wait _conpleted(int start _nessage) {
int reply identifier = (start_nessage >> 16) | 0x8000;

int reply = 0;

while (((reply &1) ==1) [l @NCA | oop<=s
|| (reply_identifier !'= (reply >> 16))) {

control channel.data = start_nessage;// ask: is done?
reply = control channel . dat a; [l reply: yes/no

}
}

e Leti be the per-iteration cost of the whi | e loop.
e Let E be the total hardware method WCET.

« The maximum number ki + kos
of loop iterations s is E(S) — k3 + ?,[! = W
determined using an 2

equation (right).

Hardware Methods Evaluation

 Goal: compare the WCET of various functions
on JOP, when implemented as:
— Software (in pure Java)
— Co-processors (using hardware methods)

* The evaluation considers the following:
— Functions that process arrays.
— Functions that may contain infeasible paths.
— Functions that are naturally parallelisable.

Array Processing (1)

e Example: multiply/accumulate:

public int macl(int size, int[]alpha, int[]beta) {
i nt out = O;
for (int i =0; i < size; |++)

{
}

return out;

out += alpha[i] * beta[i];

« Benefit of hardware methods: improved average
and worst-case performance.

Array Processing (2)

Implementation WCET Overhead Per-iteration

of macl (10,000 K, + Kq cost K,
MACS)

Pure Java 730,334 334 73

Hardware 60,916 916 6

Method

e On the test JOP platform with one CPU and one
hardware method, MAC iIs 12 times faster in
hardware - Iin the worst case.

Infeasible Paths (1)

Example: search an array for a maximum value:

public int search_max(int size, int[]data) {
int max = O;
for (int i =0 ; 1 <size ; i ++)
{
int d = data[i];
if (d>pmx) mx = d; /'l how often?

}

return nax;

}
How often is the 1 f condition true?

Pessimistic assumption: always.
Optimistic assumption: once.
With a hardware method: it doesn’t matter.

Infeasible Paths (2)

Implementation WCET Overhead Per-iteration
of search_nax (10,000 items) kl + k3 cost k2
Pure Java 420,184 184 42
(optimistic)

Pure Java 450,308 308 45
(pessimistic)

Hardware Method 30,765 765 3

e The per-iteration cost is much smaller and it’s

the same In the best and worst case.

 Infeasible paths are not important.

Parallel Operations (1)

« Example: counting the number of bits that are 1.

public int bit_count(int size, int[]data)

{

}

I nt count = O;

for (int i =0 ; i <size; i ++)

{
int d =data [i];
for (int j =0 ; j <32 ; j ++)
{

if ((d &1) ==1) count ++;
d =d > 1;
}
}

return count;

« Benefit of hardware methods: do all operations
within the inner loop In parallel.

Parallel Operations (2)

e Basic improvement using a lookup table:

public int bit_count(int size, int[]data)

{
i nt count = O;
for (int i =0 ; i <size; i ++)
{
int d =data [i];
for (int j =0 ; j <4 ;| ++)
{
count += lut [d & 255];
d =d >> §;
}
}
return count;
}

e This provides some degree of parallelism...
 But hardware methods allow even more.

Parallel Operations (3)

Implementation WCET Overhead Per-iteration
of bit_count (10,000 items) kl + k3 cost k2
Pure Java 12,300,308 308 1230
(naive)

Pure Java 2,650,308 308 265
(lookup table)

Hardware Method 30,765 765 3

e A substantial improvement!

Conclusion

 Hardware methods can be used to replace Java
methods in embedded real-time systems:

— They improve average and worst-case performance.

— They act as plug-in replacements for software
methods, abstracting the details of hardware access.

e Currently implemented for the JOP platform.
— An implementation for the PC platform is in progress.

Thank You

e Questions?

