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Goal of this work

Propose CPU modifications for:
© accurate worst case execution time (WCET) analysis.

T=0 T=WCET
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Goal of this work

Propose CPU modifications for:
© accurate worst case execution time (WCET) analysis.

T=WCET

@ improved guaranteed throughput (versus a simple CPU).

T=0 T=WCET2 T=WCET1
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S
Requirements

The CPU modifications must:

@ accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and
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S
Requirements

The CPU modifications must:
@ accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and
@ restrict this operation so that:

e timings can be determined safely by measurement, and
o the WCET analysis model won't include any pessimistic assumptions.

T=0 T=WCET2 T=WCET1

True WCET2 True WCET1
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A trace

A trace is a path through a program.
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A trace

A trace is a path through a program.

In this work, every trace has two forms:
@ executable code that implements some machine code within a
program; often more than one basic block.
@ a timing model that gives precise information about path timings
through that code.
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A trace

A trace is a path through a program.

In this work, every trace has two forms:

@ executable code that implements some machine code within a
program; often more than one basic block.

@ a timing model that gives precise information about path timings
through that code.

Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.
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e —
A trace

A trace is a path through a program.

In this work, every trace has two forms:

@ executable code that implements some machine code within a
program; often more than one basic block.
@ a timing model that gives precise information about path timings
through that code.
Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

How do traces meet the requirements?
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Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;
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Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;
@ Apply WCET analysis to find the WCEP;

© Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.
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Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;
@ Apply WCET analysis to find the WCEP;

© Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.
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Previous work

4. Allocate space in a trace scratchpad for microcode.
The microcode is used in place of the original machine code.

w bits per line

space occupied by a trace T,

Ce=5

Cinax lines

unused space

MACHINE CODE
CPU PIPELINE

DECODE

MICRO OPS.

ADDRESS

J. Whitham and N. Audsley, Using trace scratch-

. pads to reduce execution times in predictable real-
RTS/WA time architectures, Proc. RTAS, 305-316, 2008.
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e —
Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.
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Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

@ the need for a custom CPU with a writable microcode store,
@ the need for a CPU-specific compiler to generate microcode,

@ the poor code density of microcode.
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e —
Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

@ the need for a custom CPU with a writable microcode store,
@ the need for a CPU-specific compiler to generate microcode,
@ the poor code density of microcode.

Result: No microcode. The virtual trace controls a conventional but
constrained dynamic CPU scheduler.
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Implementation

@ Regard the CPU dynamic scheduler as a decoder:
machine code + virtual trace — microcode
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Implementation

@ Regard the CPU dynamic scheduler as a decoder:
machine code + virtual trace — microcode

@ Handle all events that could change execution times.

Instructions >< Memory Dependence
nstructions / Misprediction Detected | Load/store unit
Instruction X ) X Data Cache Stall
Cache Stall Dynamic Scheduler
virtugl trace Misprediction Detected
Exception Detected Execution unit
Instruction interface Variable Duration
X Instruction

"Microcode"
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e —
Benefits of virtual traces

Some are the same as for traces:

@ Use speculative and superscalar out-of-order execution predictably.
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Benefits of virtual traces

Some are the same as for traces:
@ Use speculative and superscalar out-of-order execution predictably.
@ The execution time of any path through any program is known.
e Use {your favorite static WCET approach} for analysis.

But there's more:

@ Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.
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e —
Benefits of virtual traces

Some are the same as for traces:
@ Use speculative and superscalar out-of-order execution predictably.
@ The execution time of any path through any program is known.
e Use {your favorite static WCET approach} for analysis.

But there's more:

@ Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

@ The CPU is its own timing model.
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Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?
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Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

@ Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.
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|
Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

@ Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

@ Now: space limit is less restrictive, so the whole program should be
translated.

@ This problem is similar to selecting static branch predictions to
minimize WCET.

F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. ECRTS, pages 33—-40, 2005.
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S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

@ Trace formation algorithm from previous work.
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S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

© Assume all branches are unknown;
@ Use WCET analysis to find the WCEP through the program;
© Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

@ Trace formation algorithm from previous work.
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S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

© Assume all branches are unknown;
@ Use WCET analysis to find the WCEP through the program;
© Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

@ Trace formation algorithm from previous work.
e Form traces by following branch predictions.
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N
Variable

L, the maximum virtual trace length.
(The number of branch predictions stored in each virtual trace.)
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N
Variable

L, the maximum virtual trace length.
(The number of branch predictions stored in each virtual trace.)

@ Defined by the size of the memory for virtual traces.
@ L =1 = Trivial traces: like assuming all branches are unknown.

@ L > 1= Non-trivial traces: speculation is used to reduce the cost of
the predicted execution path.
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Experiment 1

What is the relationship between trace length and WCET?
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e Compare L =1 against L € [4,8,12,16] for various benchmark
programs.
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Experiment 1

What is the relationship between trace length and WCET?

e Compare L =1 against L € [4,8,12,16] for various benchmark
programs.

@ Using experimental platform from:

J. Whitham. Real-time processor architectures for worst case execution time
reduction. PhD Thesis YCST-2008-01, University of York, 2008.
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N
Results 1

Normalized against results for L = 1.

Normalised WCET
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Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?
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S
Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

@ Try flipping each branch prediction in each program,
i.e. not taken < taken, and evaluate the new WCET in each case.
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S
Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

@ Try flipping each branch prediction in each program,
i.e. not taken < taken, and evaluate the new WCET in each case.

@ If an improvement is found, repeat step 1.
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Results 2
Program L=4 L=16
i NW Y%ch | i NW Y%ch
cnt 1 0679 01% |1 0618 0.1%
compress 3 0604 02% |2 0601 02%
edn 2 0629 0.5% n/a
expint 1 0668 00% |1 0605 0.0%
fibcall 1 0616 168% |1 0.616 16.8%
janne_complex | 2 0.675 6.7% | 2 0.675 6.7%
matmult 2 0677 01% |2 0622 0.1%
ndes 4 0669 0.1% |5 0661 02%
3 0305 79% |2 0.198 21.3%

ns
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Related Work

Scratchpads
Puaut, Suhendra, Wehmeyer

@ Single-path paradigm
Puschner

@ Hybrid timing analysis
Mohan, Mueller

o Dataflow-like computing models
Lee et al.
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Implementation
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1 ]

Fetch unit

=

(I

Instruction cache
and memory i/face

Dynamic Scheduler

[l New component
T [ Replacement for conventional cache
7 [ ] Conventional CPU component
with minor changes

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis

t

Load/store
unit

i

Data cache
and memory i/face

SSa4ppy

Memory for encoded
virtual traces

iy 3¢
RS I
]| S 3
SIS g8
25 R
Nk =
)
o
=

Execution units

1 ]

Empty

Squash

Dynamic Scheduler

Enable fetch

Predict taken Fetch unit

Instruction
scratchpad and
memory i/face

Address

Machine code

August 27th 2008

S

g

g

R

3 | Load/store
<3 unit

3

3

B

memory i/face

21/ 23



Conclusion

@ Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.
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Conclusion

@ Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

o Consequently, greater WCET reductions are possible.

@ The greatest benefits of traces are seen when one execution path is
much more costly than the others.

@ Limiting virtual trace sizes to L = 8 is sufficient in many cases.
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Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

o Consequently, greater WCET reductions are possible.

@ The greatest benefits of traces are seen when one execution path is
much more costly than the others.

@ Limiting virtual trace sizes to L = 8 is sufficient in many cases.

@ The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.
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End

@ All questions and comments are welcome!

@ Further information:
http://wuw. jwhitham.org.uk/pubs/
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