
Forming Virtual Traces for
WCET Analysis and Reduction

Jack Whitham and Neil Audsley

August 27th 2008

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 1 / 23

Goal of this work

Propose CPU modifications for:

1 accurate worst case execution time (WCET) analysis.

T=0 T=WCET

Task

2 improved guaranteed throughput (versus a simple CPU).

T=0 T=WCET1T=WCET2

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 2 / 23

Goal of this work

Propose CPU modifications for:

1 accurate worst case execution time (WCET) analysis.

T=0 T=WCET

Task

2 improved guaranteed throughput (versus a simple CPU).

T=0 T=WCET1T=WCET2

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 2 / 23

Requirements

The CPU modifications must:

accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and

restrict this operation so that:

timings can be determined safely by measurement, and
the WCET analysis model won’t include any pessimistic assumptions.

T=0 T=WCET1T=WCET2

True WCET2 True WCET1

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 3 / 23

Requirements

The CPU modifications must:

accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and

restrict this operation so that:

timings can be determined safely by measurement, and

the WCET analysis model won’t include any pessimistic assumptions.

T=0 T=WCET1T=WCET2

True WCET2 True WCET1

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 3 / 23

Requirements

The CPU modifications must:

accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and

restrict this operation so that:

timings can be determined safely by measurement, and
the WCET analysis model won’t include any pessimistic assumptions.

T=0 T=WCET1T=WCET2

True WCET2 True WCET1

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 3 / 23

A trace

A trace is a path through a program.

In this work, every trace has two forms:

1 executable code that implements some machine code within a
program; often more than one basic block.

2 a timing model that gives precise information about path timings
through that code.

Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

How do traces meet the requirements?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 4 / 23

A trace

A trace is a path through a program.

In this work, every trace has two forms:

1 executable code that implements some machine code within a
program; often more than one basic block.

2 a timing model that gives precise information about path timings
through that code.

Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

How do traces meet the requirements?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 4 / 23

A trace

A trace is a path through a program.

In this work, every trace has two forms:

1 executable code that implements some machine code within a
program; often more than one basic block.

2 a timing model that gives precise information about path timings
through that code.

Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

How do traces meet the requirements?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 4 / 23

A trace

A trace is a path through a program.

In this work, every trace has two forms:

1 executable code that implements some machine code within a
program; often more than one basic block.

2 a timing model that gives precise information about path timings
through that code.

Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

How do traces meet the requirements?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 4 / 23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 5 / 23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 5 / 23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 5 / 23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

1 Take a program in machine code form;

2 Apply WCET analysis to find the WCEP;

3 Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.

exit returns to

machine code

trace entrance

trace exit trace exit

trace implemented
using microcode

trace

BB4

BB5BB2

BB3BB1 BB6 BB1,3,6

BB4

BB5BB2

(a) (b)

 microcode

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 5 / 23

Previous work

4. Allocate space in a trace scratchpad for microcode.
The microcode is used in place of the original machine code.

 bits per linew

C
li

n
es

m
a
x

CPU PIPELINE

D
E

C
O

D
E

..
.

E
X

E
C

U
T

E

MICRO OPS.

MACHINE CODE

ADDRESS

eT =
 5

e
C

unused space

space occupied by a trace

J. Whitham and N. Audsley, Using trace scratch-
pads to reduce execution times in predictable real-
time architectures, Proc. RTAS, 305–316, 2008.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 6 / 23

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the poor code density of microcode.

Result: No microcode. The virtual trace controls a conventional but
constrained dynamic CPU scheduler.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 7 / 23

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the poor code density of microcode.

Result: No microcode. The virtual trace controls a conventional but
constrained dynamic CPU scheduler.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 7 / 23

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

the need for a custom CPU with a writable microcode store,

the need for a CPU-specific compiler to generate microcode,

the poor code density of microcode.

Result: No microcode. The virtual trace controls a conventional but
constrained dynamic CPU scheduler.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 7 / 23

Implementation

1 Regard the CPU dynamic scheduler as a decoder:

machine code + virtual trace → microcode

2 Handle all events that could change execution times.

Memory Dependence
Misprediction Detected

Variable Duration
Instruction

Dynamic SchedulerCache Stall

Instructions

Instruction

Predictions

Data Cache Stall

Misprediction Detected

Exception Detected Execution unit

Load/store unit

Instruction interface

"Microcode"

virtual trace

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 8 / 23

Implementation

1 Regard the CPU dynamic scheduler as a decoder:

machine code + virtual trace → microcode

2 Handle all events that could change execution times.

Memory Dependence
Misprediction Detected

Variable Duration
Instruction

Dynamic SchedulerCache Stall

Instructions

Instruction

Predictions

Data Cache Stall

Misprediction Detected

Exception Detected Execution unit

Load/store unit

Instruction interface

"Microcode"

virtual trace

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 8 / 23

Benefits of virtual traces

Some are the same as for traces:

Use speculative and superscalar out-of-order execution predictably.

The execution time of any path through any program is known.

Use {your favorite static WCET approach} for analysis.

But there’s more:

Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

The CPU is its own timing model.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 9 / 23

Benefits of virtual traces

Some are the same as for traces:

Use speculative and superscalar out-of-order execution predictably.

The execution time of any path through any program is known.

Use {your favorite static WCET approach} for analysis.

But there’s more:

Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

The CPU is its own timing model.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 9 / 23

Benefits of virtual traces

Some are the same as for traces:

Use speculative and superscalar out-of-order execution predictably.

The execution time of any path through any program is known.

Use {your favorite static WCET approach} for analysis.

But there’s more:

Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

The CPU is its own timing model.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 9 / 23

Benefits of virtual traces

Some are the same as for traces:

Use speculative and superscalar out-of-order execution predictably.

The execution time of any path through any program is known.

Use {your favorite static WCET approach} for analysis.

But there’s more:

Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

The CPU is its own timing model.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 9 / 23

Benefits of virtual traces

Some are the same as for traces:

Use speculative and superscalar out-of-order execution predictably.

The execution time of any path through any program is known.

Use {your favorite static WCET approach} for analysis.

But there’s more:

Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

The CPU is its own timing model.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 9 / 23

Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

Now: space limit is less restrictive, so the whole program should be
translated.

This problem is similar to selecting static branch predictions to
minimize WCET.

F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. ECRTS, pages 33–40, 2005.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 10 / 23

Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

Now: space limit is less restrictive, so the whole program should be
translated.

This problem is similar to selecting static branch predictions to
minimize WCET.

F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. ECRTS, pages 33–40, 2005.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 10 / 23

Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

Now: space limit is less restrictive, so the whole program should be
translated.

This problem is similar to selecting static branch predictions to
minimize WCET.

F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. ECRTS, pages 33–40, 2005.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 10 / 23

Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

Now: space limit is less restrictive, so the whole program should be
translated.

This problem is similar to selecting static branch predictions to
minimize WCET.

F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. ECRTS, pages 33–40, 2005.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 10 / 23

Proposed solution

Combine two algorithms:

Bodin-Puaut static branch prediction scheme.

1 Assume all branches are unknown;
2 Use WCET analysis to find the WCEP through the program;
3 Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

Trace formation algorithm from previous work.

Form traces by following branch predictions.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 11 / 23

Proposed solution

Combine two algorithms:

Bodin-Puaut static branch prediction scheme.
1 Assume all branches are unknown;

2 Use WCET analysis to find the WCEP through the program;
3 Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

Trace formation algorithm from previous work.

Form traces by following branch predictions.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 11 / 23

Proposed solution

Combine two algorithms:

Bodin-Puaut static branch prediction scheme.
1 Assume all branches are unknown;
2 Use WCET analysis to find the WCEP through the program;

3 Assign unknown branches to follow the WCEP.
If any unknown branches were found, go to 2.

Trace formation algorithm from previous work.

Form traces by following branch predictions.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 11 / 23

Proposed solution

Combine two algorithms:

Bodin-Puaut static branch prediction scheme.
1 Assume all branches are unknown;
2 Use WCET analysis to find the WCEP through the program;
3 Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

Trace formation algorithm from previous work.

Form traces by following branch predictions.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 11 / 23

Proposed solution

Combine two algorithms:

Bodin-Puaut static branch prediction scheme.
1 Assume all branches are unknown;
2 Use WCET analysis to find the WCEP through the program;
3 Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

Trace formation algorithm from previous work.

Form traces by following branch predictions.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 11 / 23

Example

BB1

BB3

BB6

BB2

BB5BB4

BB8

BB1

BB3

BB6

BB2

BB5BB4

BB8BB8’

BB1

BB3

BB6

BB2

BB5BB4

BB8BB7 BB7 BB7BB8’

?

? ?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 12 / 23

Example

BB1

BB3

BB6

BB2

BB5BB4

BB8

BB1

BB3

BB6

BB2

BB5BB4

BB8BB8’

BB1

BB3

BB6

BB2

BB5BB4

BB8BB7 BB7 BB7BB8’

?

? ?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 13 / 23

Example

BB1

BB3

BB6

BB2

BB5BB4

BB8

BB1

BB3

BB6

BB2

BB5BB4

BB8BB8’

BB1

BB3

BB6

BB2

BB5BB4

BB8BB7 BB7 BB7BB8’

?

? ?

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 14 / 23

Variable

L, the maximum virtual trace length.
(The number of branch predictions stored in each virtual trace.)

Defined by the size of the memory for virtual traces.

L = 1 ⇒ Trivial traces: like assuming all branches are unknown.

L > 1 ⇒ Non-trivial traces: speculation is used to reduce the cost of
the predicted execution path.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 15 / 23

Variable

L, the maximum virtual trace length.
(The number of branch predictions stored in each virtual trace.)

Defined by the size of the memory for virtual traces.

L = 1 ⇒ Trivial traces: like assuming all branches are unknown.

L > 1 ⇒ Non-trivial traces: speculation is used to reduce the cost of
the predicted execution path.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 15 / 23

Experiment 1

What is the relationship between trace length and WCET?

Compare L = 1 against L ∈ [4, 8, 12, 16] for various benchmark
programs.

Using experimental platform from:

J. Whitham. Real-time processor architectures for worst case execution time

reduction. PhD Thesis YCST-2008-01, University of York, 2008.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 16 / 23

Experiment 1

What is the relationship between trace length and WCET?

Compare L = 1 against L ∈ [4, 8, 12, 16] for various benchmark
programs.

Using experimental platform from:

J. Whitham. Real-time processor architectures for worst case execution time

reduction. PhD Thesis YCST-2008-01, University of York, 2008.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 16 / 23

Experiment 1

What is the relationship between trace length and WCET?

Compare L = 1 against L ∈ [4, 8, 12, 16] for various benchmark
programs.

Using experimental platform from:

J. Whitham. Real-time processor architectures for worst case execution time

reduction. PhD Thesis YCST-2008-01, University of York, 2008.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 16 / 23

Results 1

Normalized against results for L = 1.
du

ff

fd
ct

ja
nn

e_
co

m
pl

ex

fib
ca

ll

di
v fir bs

nd
es

jfd
ct

in
t

m
at

m
ul

t

cn
t

ex
pi

nt
in

se
rt

so
rt

co
m

pr
es

s

ed
n

cr
c ns

bu
bb

le

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

L=16
L=12

L=8
L=4

N
or

m
al

is
ed

 W
C

E
T

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 17 / 23

Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

1 Try flipping each branch prediction in each program,
i.e. not taken ↔ taken, and evaluate the new WCET in each case.

2 If an improvement is found, repeat step 1.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 18 / 23

Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

1 Try flipping each branch prediction in each program,
i.e. not taken ↔ taken, and evaluate the new WCET in each case.

2 If an improvement is found, repeat step 1.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 18 / 23

Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

1 Try flipping each branch prediction in each program,
i.e. not taken ↔ taken, and evaluate the new WCET in each case.

2 If an improvement is found, repeat step 1.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 18 / 23

Results 2

function Post Optimizer(G):
conditionals = {(v0, v1)|(v0, v1) ∈ E ∧

|{(v1, v2) ∈ E}| = 2 ∧ (v0, v1).prediction 6= None}
improvement = True ; i = 0 ; bestp = None
Z0 = Calculate WCET(G)
while improvement:

Zi = Z0 ; best = None
forall x ∈ conditionals:

// flip direction of prediction
save = x.prediction
(v0, v1) = x ; next = {(v1, v2)|(v1, v2) ∈ E}
x.prediction = pop(next - {x})
// test for improvement

Z1 = Calculate WCET(G)
if Z1 < Zi:

Zi = Z1 ; best = x
bestp = x.prediction

end if
// restore

x.prediction = save
end for
if best 6= None:

Z0 = Zi ; best.prediction = bestp
improvement = True ; i = i + 1

end if
end while

end procedure

Figure 7. Post Optimizer attempts
to improve the predictions made by
Set Predictions in order to reduce
WCET.

This suggests that it might be worth eliminating some
of the conditional branches and replacing them with pred-
icated operations, so that one path through a trace imple-
ments several actual paths through the program. A su-
perblock can be extended in this way using if-conversion:
the result is known as a hyperblock [9]. The single-path
paradigm [14] uses predication throughout a program to
reduce all paths to a single one. This simplifies WCET
analysis but might also increase the WCET of some pro-
grams, which would be avoided if such path merging was
only performed as a local optimization. However, support
for predication would force extensions to be made to the
operation scheduler.

4.6 Improvements to the Algorithm
The optimality of the Set Predictions algorithm has not

previously been studied [3]. It is known not to reconsider
any of the predictions that it makes, so suboptimal deci-
sions are fixed forever. The algorithm does consider the
possibility that the predictions might change the WCEP
but it responds to this only by adding more predictions
along the new WCEP. (This is used for ndes, where an ad-
ditional iteration is needed.) This suboptimality is a partic-
ular concern for traces because the extra cost of a branch

Program L = 4 L = 16
i NW %ch i NW %ch

cnt 1 0.679 0.1% 1 0.618 0.1%
compress 3 0.604 0.2% 2 0.601 0.2%
edn 2 0.629 0.5% n/a
expint 1 0.668 0.0% 1 0.605 0.0%
fibcall 1 0.616 16.8% 1 0.616 16.8%
janne complex 2 0.675 6.7% 2 0.675 6.7%
matmult 2 0.677 0.1% 2 0.622 0.1%
ndes 4 0.669 0.1% 5 0.661 0.2%
ns 3 0.305 7.9% 2 0.198 21.3%

Table 3. WCET reduction achieved by
Post Optimizer after i iterations, ex-
pressed as a normalized WCET (NW) and
as a percentage of the starting WCET
from Table 2. Benchmarks are omitted
from this table where no improvement
was found.

misprediction is potentially higher. Therefore, this section
considers reviewing predictions after they are made: this
might lead to a lower WCET.

In order to experiment with this possibility, a sec-
ond algorithm was implemented to improve the results
of Set Predictions (Figure 7). Post Optimizer temporarily
switches the direction of each branch prediction in turn,
then evaluates the WCET. If any WCET reduction was
found, the change resulting in the lowest WCET is com-
mitted and the algorithm repeats. Thus, Post Optimizer
is a hill-climbing search for the best set of branch predic-
tions. It is slow because it considers changes to every con-
ditional branch whenever an improvement can be made to
any conditional branch. However, this is justified because
the purpose is to evaluate Set Predictions against the im-
provements that could be made if computation time is not
an issue.

The WCET reductions obtained by Post Optimizer are
usually minimal (Table 3). Post Optimizer was only able
to improve 9 out of the 18 benchmarks, and then only by a
fraction of a percentage in 6 of those cases. This suggests
that Set Predictions already works well enough for most
programs, even though it uses a simple strategy. Each of
the three cases where Post Optimizer led to a significant
improvement were found to be due to a situation where
adding traces caused a subtle change in the WCEP at a
frequently-executed point in the program. For example,
in ns, the branch at the end of an inner loop is originally
assumed to be taken. But adding traces transforms the
inner loop to the extent that it is actually better to pre-
dict it as not taken. Similar changes are applied to fibcall
and janne complex. This suggests that Post Optimizer is
worthwhile in some cases, and that it is therefore worth
trying to reduce its time cost. One way to do this would
be to consider only n conditionals with the highest val-

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 19 / 23

Related Work

Scratchpads
Puaut, Suhendra, Wehmeyer

Single-path paradigm
Puschner

Hybrid timing analysis
Mohan, Mueller

Dataflow-like computing models
Lee et al.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 20 / 23

Implementation

Fetch unit

Dynamic Scheduler

Data
scratchpad and
memory i/face

VTC

Execution units

Load/store
unit

VTR

Memory for encoded
virtual traces

Instruction
scratchpad and
memory i/face

Dynamic Scheduler

Fetch unit

Execution units

Load/store
unit

Instruction cache
and memory i/face

Data cache
and memory i/face

New component

Replacement for conventional cache

Conventional CPU component

with minor changes

Address

Machine code

Empty

Enable fetch

Predict taken

M
icro

o
p
era

tio
n
s

A
d
d
ress

L
o
a
d
 V

T
R

P
red

ict ta
ken

E
n
d
 o

f
tra

ce

Squash

G
et n

ext
p
red

ictio
n

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 21 / 23

Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

Consequently, greater WCET reductions are possible.

The greatest benefits of traces are seen when one execution path is
much more costly than the others.

Limiting virtual trace sizes to L = 8 is sufficient in many cases.

The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 22 / 23

Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

Consequently, greater WCET reductions are possible.

The greatest benefits of traces are seen when one execution path is
much more costly than the others.

Limiting virtual trace sizes to L = 8 is sufficient in many cases.

The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 22 / 23

Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

Consequently, greater WCET reductions are possible.

The greatest benefits of traces are seen when one execution path is
much more costly than the others.

Limiting virtual trace sizes to L = 8 is sufficient in many cases.

The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 22 / 23

Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

Consequently, greater WCET reductions are possible.

The greatest benefits of traces are seen when one execution path is
much more costly than the others.

Limiting virtual trace sizes to L = 8 is sufficient in many cases.

The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 22 / 23

Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

Consequently, greater WCET reductions are possible.

The greatest benefits of traces are seen when one execution path is
much more costly than the others.

Limiting virtual trace sizes to L = 8 is sufficient in many cases.

The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 22 / 23

End

All questions and comments are welcome!

Further information:
http://www.jwhitham.org.uk/pubs/

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis and ReductionAugust 27th 2008 23 / 23

http://www.jwhitham.org.uk/pubs/

