Forming Virtual Traces for
WCET Analysis and Reduction

Jack Whitham and Neil Audsley

August 27th 2008

;@RTS/U&

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 1/23

N
Goal of this work

Propose CPU modifications for:
© accurate worst case execution time (WCET) analysis.

T=0 T=WCET

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 2/23

N
Goal of this work

Propose CPU modifications for:
© accurate worst case execution time (WCET) analysis.

T=WCET

@ improved guaranteed throughput (versus a simple CPU).

T=0 T=WCET2 T=WCET1

@RTS/U&

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 2/23

S
Requirements

The CPU modifications must:

@ accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 3/23

S
Requirements

The CPU modifications must:
@ accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and
@ restrict this operation so that:
e timings can be determined safely by measurement, and

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 3/23

S
Requirements

The CPU modifications must:
@ accommodate speculative and superscalar out-of-order operation so
that throughput can be increased versus a simple CPU, and
@ restrict this operation so that:

e timings can be determined safely by measurement, and
o the WCET analysis model won't include any pessimistic assumptions.

T=0 T=WCET2 T=WCET1

True WCET2 True WCET1

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 3/23

e —
A trace

A trace is a path through a program.

@RTS/U&

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 4/23

A trace

A trace is a path through a program.

In this work, every trace has two forms:
@ executable code that implements some machine code within a
program; often more than one basic block.
@ a timing model that gives precise information about path timings
through that code.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 4/23

e —
A trace

A trace is a path through a program.

In this work, every trace has two forms:

@ executable code that implements some machine code within a
program; often more than one basic block.

@ a timing model that gives precise information about path timings
through that code.

Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

(L RTS /%

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 4/23

e —
A trace

A trace is a path through a program.

In this work, every trace has two forms:

@ executable code that implements some machine code within a
program; often more than one basic block.
@ a timing model that gives precise information about path timings
through that code.
Usually, the main path through a trace executes more quickly than the
equivalent machine code. Always, the function of a program is unchanged
by adding traces.

How do traces meet the requirements?

(L RTS /%

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 4/23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 5/23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;
@ Apply WCET analysis to find the WCEP;

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 5/23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;
@ Apply WCET analysis to find the WCEP;

© Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.

X RTS /o

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 5/23

Previous work

In previous work, we considered the use of a trace scratchpad to
implement traces and meet the requirements, used as follows:

© Take a program in machine code form;
@ Apply WCET analysis to find the WCEP;

© Convert subsequences of the WCEP into traces implemented by
microcode. These are explicitly parallel and optimise execution for
one path.

i
trace -, ' microcode

—(BB OH{BB3=(H{BB6 K = —(— BB136
””””””””””””” e

trace implemented

using microcode

trace entrance

trace exit trace exit

exit returns to
(b) machine code

(a)

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 5/23

Previous work

4. Allocate space in a trace scratchpad for microcode.
The microcode is used in place of the original machine code.

w bits per line

space occupied by a trace T,

Ce=5

Cinax lines

unused space

MACHINE CODE
CPU PIPELINE

DECODE

MICRO OPS.

ADDRESS

J. Whitham and N. Audsley, Using trace scratch-

. pads to reduce execution times in predictable real-
RTS/WA time architectures, Proc. RTAS, 305-316, 2008.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008

6/23

e —
Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 7/23

Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

@ the need for a custom CPU with a writable microcode store,
@ the need for a CPU-specific compiler to generate microcode,

@ the poor code density of microcode.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 7/23

e —
Virtual trace

A virtual trace is a compact encoding, specifying the execution path that
should be assumed by the CPU.

Virtual traces are theoretically equivalent to traces, but some practical
problems are solved:

@ the need for a custom CPU with a writable microcode store,
@ the need for a CPU-specific compiler to generate microcode,
@ the poor code density of microcode.

Result: No microcode. The virtual trace controls a conventional but
constrained dynamic CPU scheduler.

(L RTS/«

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 7/23

Implementation

@ Regard the CPU dynamic scheduler as a decoder:
machine code + virtual trace — microcode

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 8/23

Implementation

@ Regard the CPU dynamic scheduler as a decoder:
machine code + virtual trace — microcode

@ Handle all events that could change execution times.

Instructions >< Memory Dependence
nstructions / Misprediction Detected | Load/store unit
Instruction X) X Data Cache Stall
Cache Stall Dynamic Scheduler
virtugl trace Misprediction Detected
Exception Detected Execution unit
Instruction interface Variable Duration
X Instruction

"Microcode"

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 8/23

e —
Benefits of virtual traces

Some are the same as for traces:

@ Use speculative and superscalar out-of-order execution predictably.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 9/23

e —
Benefits of virtual traces

Some are the same as for traces:
@ Use speculative and superscalar out-of-order execution predictably.

@ The execution time of any path through any program is known.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 9/23

e —
Benefits of virtual traces

Some are the same as for traces:
@ Use speculative and superscalar out-of-order execution predictably.
@ The execution time of any path through any program is known.
e Use {your favorite static WCET approach} for analysis.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 9/23

Benefits of virtual traces

Some are the same as for traces:
@ Use speculative and superscalar out-of-order execution predictably.
@ The execution time of any path through any program is known.
e Use {your favorite static WCET approach} for analysis.

But there's more:

@ Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 9/23

e —
Benefits of virtual traces

Some are the same as for traces:
@ Use speculative and superscalar out-of-order execution predictably.
@ The execution time of any path through any program is known.
e Use {your favorite static WCET approach} for analysis.

But there's more:

@ Any CPU could be modified with the correct restrictions. Predictable
mode could be optional.

@ The CPU is its own timing model.
L RTS /5%

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 9/23

|
Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 10 / 23

|
Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

@ Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 10 / 23

|
Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

@ Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

@ Now: space limit is less restrictive, so the whole program should be
translated.

X RTS /o

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 10 / 23

|
Problem (for this paper)

How do we turn a program (as a graph of basic blocks) into a graph of
virtual traces traces?

@ Previously: due to limited trace scratchpad space, only some parts of
the program could be translated. A specialized search algorithm was
used to find the most suitable WCEP subsequences.

@ Now: space limit is less restrictive, so the whole program should be
translated.

@ This problem is similar to selecting static branch predictions to
minimize WCET.

F. Bodin and I. Puaut. A WCET-oriented static
branch prediction scheme for real time systems. In
Proc. ECRTS, pages 33—-40, 2005.

RTS /o« pog

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 10 / 23

S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

@ Trace formation algorithm from previous work.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 11/23

S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.
© Assume all branches are unknown;

@ Trace formation algorithm from previous work.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 11/23

S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

@ Assume all branches are unknown;
@ Use WCET analysis to find the WCEP through the program;

@ Trace formation algorithm from previous work.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 11 /23

S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

© Assume all branches are unknown;
@ Use WCET analysis to find the WCEP through the program;
© Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

@ Trace formation algorithm from previous work.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 11 /23

S
Proposed solution

Combine two algorithms:
@ Bodin-Puaut static branch prediction scheme.

© Assume all branches are unknown;
@ Use WCET analysis to find the WCEP through the program;
© Assign unknown branches to follow the WCEP.

If any unknown branches were found, go to 2.

@ Trace formation algorithm from previous work.
e Form traces by following branch predictions.

% RTS/sx

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 11 /23

S
Example

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 12 /23

S
Example

[BB7] ;

\BBS\:

- ,,\,,, ,,,\L,, -

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 13 /23

Example

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 14 / 23

N
Variable

L, the maximum virtual trace length.
(The number of branch predictions stored in each virtual trace.)

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 15 /23

N
Variable

L, the maximum virtual trace length.
(The number of branch predictions stored in each virtual trace.)

@ Defined by the size of the memory for virtual traces.
@ L =1 = Trivial traces: like assuming all branches are unknown.

@ L > 1= Non-trivial traces: speculation is used to reduce the cost of
the predicted execution path.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 15 /23

S
Experiment 1

What is the relationship between trace length and WCET?

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 16 / 23

S
Experiment 1

What is the relationship between trace length and WCET?

e Compare L =1 against L € [4,8,12,16] for various benchmark
programs.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 16 / 23

Experiment 1

What is the relationship between trace length and WCET?

e Compare L =1 against L € [4,8,12,16] for various benchmark
programs.

@ Using experimental platform from:

J. Whitham. Real-time processor architectures for worst case execution time
reduction. PhD Thesis YCST-2008-01, University of York, 2008.

RTS /5«

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 16 / 23

N
Results 1

Normalized against results for L = 1.

Normalised WCET

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 17 /23

S
Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 18 / 23

S
Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

@ Try flipping each branch prediction in each program,
i.e. not taken < taken, and evaluate the new WCET in each case.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 18 / 23

S
Experiment 2

The Bodin-Puaut algorithm never changes any branch predictions once
made... is an opportunity for improvement being lost?

@ Try flipping each branch prediction in each program,
i.e. not taken < taken, and evaluate the new WCET in each case.

@ If an improvement is found, repeat step 1.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 18 / 23

Results 2
Program L=4 L=16
i NW Y%ch | i NW Y%ch
cnt 1 0679 01% |1 0618 0.1%
compress 3 0604 02% |2 0601 02%
edn 2 0629 0.5% n/a
expint 1 0668 00% |1 0605 0.0%
fibcall 1 0616 168% |1 0.616 16.8%
janne_complex | 2 0.675 6.7% | 2 0.675 6.7%
matmult 2 0677 01% |2 0622 0.1%
ndes 4 0669 0.1% |5 0661 02%
3 0305 79% |2 0.198 21.3%

ns
@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis

August 27th 2008

19 /23

N
Related Work

Scratchpads
Puaut, Suhendra, Wehmeyer

@ Single-path paradigm
Puschner

@ Hybrid timing analysis
Mohan, Mueller

o Dataflow-like computing models
Lee et al.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 20 /23

S
Implementation

Execution units

1]

Fetch unit

=

(I

Instruction cache
and memory i/face

Dynamic Scheduler

[l New component
T [Replacement for conventional cache
7 [] Conventional CPU component
with minor changes

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis

t

Load/store
unit

i

Data cache
and memory i/face

SSa4ppy

Memory for encoded
virtual traces

iy 3¢
RS I
]| S 3
SIS g8
25 R
Nk =
)
o
=

Execution units

1]

Empty

Squash

Dynamic Scheduler

Enable fetch

Predict taken Fetch unit

Instruction
scratchpad and
memory i/face

Address

Machine code

August 27th 2008

S

g

g

R

3 | Load/store
<3 unit

3

3

B

memory i/face

21/ 23

Conclusion

@ Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 22 /23

Conclusion

@ Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

o Consequently, greater WCET reductions are possible.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 22 /23

Conclusion

@ Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the

trace data.
o Consequently, greater WCET reductions are possible.

@ The greatest benefits of traces are seen when one execution path is
much more costly than the others.

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 22 /23

Conclusion

@ Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

o Consequently, greater WCET reductions are possible.

@ The greatest benefits of traces are seen when one execution path is
much more costly than the others.

@ Limiting virtual trace sizes to L = 8 is sufficient in many cases.

X RTS /o

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 22 /23

Conclusion

Virtual traces improve on scratchpad traces by allowing an entire
program to be executed in trace form with a low storage cost for the
trace data.

o Consequently, greater WCET reductions are possible.

@ The greatest benefits of traces are seen when one execution path is
much more costly than the others.

@ Limiting virtual trace sizes to L = 8 is sufficient in many cases.

@ The Bodin-Puaut algorithm is not optimal but only minor
improvements are possible.

(L RTS /%

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 22 /23

End

@ All questions and comments are welcome!

@ Further information:
http://wuw. jwhitham.org.uk/pubs/

@RTS/M

Jack Whitham and Neil Audsley () Forming Virtual Traces for WCET Analysis August 27th 2008 23 /23

http://www.jwhitham.org.uk/pubs/

