Limitations of Adaptable System Architectures for WCET Reduction

Jack Whitham and Neil Audsley
Real-Time Systems Group
Department of Computer Science
University of York, York, YO10 5DD, UK
jack@cs.york.ac.uk

Abstract

This paper identifies three major issues facing worst-
case execution time (WCET) reduction algorithms on
adaptable architectures based on research carried out for
the MCGREP-2 CPU project. The issues are exposing
more instruction level parallelism (ILP) in code, reduc-
ing loading costs for the memory and processing elements
used to reduce WCET, and making use of application-
specific hardware. Potential difficulties in each of these
areas are identified and possible solutions are proposed.

1 Introduction

Embedded systems often include some real-time func-
tionality, such as control of external machinery [1]. Real-
time tasks must operate within known time bounds (dead-
lines) in order for the overall system to be safe, and this
poses an additional requirement for software design. Com-
puting the worst-case execution time (WCET) of real-time
tasks is an important step towards assuring the safety of
the overall real-time system (RTS) [18]. WCET reduction
for a task is a closely related problem involving the allo-
cation of some memory or computing resource in order to
minimize the WCET (Figure 1).

General execution speed-up technologies such as cache
memory, deep CPU pipelines and out-of-order super-
scalar issue units [15] are good for average case execu-
tion time (ACET) reduction, but the dynamic behavior of
these components makes computing the WCET more diffi-
cult [10,24]. Therefore, even if the WCET of a task can be
reduced by such techniques, the safety of the RTS cannot
be easily assured. This motivates approaches that explic-
itly reduce the WCET of programs without introducing dy-
namic behavior, either automatically or with programmer
assistance [28]. Automatic approaches have their roots in
hardware/software co-design, i.e. partitioning tasks and
subtasks between hardware and software in order to meet
an optimization goal [2], e.g. ACET or WCET minimiza-
tion. However, because of the relative difficulty of evalu-
ating the resource consumption of candidate partitions (re-
quiring hardware synthesis [8]) and because of the differ-
ences between hardware and software languages [7], cur-
rent WCET reduction techniques avoid any need to gen-
erate hardware and instead operate by migrating subtasks
into memory units that enable faster execution. These in-

‘ real—time task ‘

‘ repeat: identify WC path ‘

path info resource cost

allocate resources
for WCET reduction

select allocations to
L] minimise task WCET
within resource limit

allocations mapped to
memories/computing resources

Figure 1. Generalized WCET reduction
process.

clude instruction scratchpads [17] and lockable caches [3].
In these cases, the partitioning problem is relatively simple
and can be solved by fast heuristics [21].

Some forms of adaptive system facilitate WCET reduc-
tion. The MCGREP-2 CPU [25-27] provides a writable
control store (WCS) [20] that can store subtasks encoded
as microinstructions (Figure 2). Our recent work [28]
shows that subtasks can be selected from the worst-case
execution path (WC path) of a program and translated au-
tomatically into microinstructions: this leads to greater
WCET reductions than instruction scratchpad techniques
because instruction level parallelism (ILP) can be ex-
ploited to execute the WC path in a shorter time period.
MCGREP-2 is adaptive and reconfigurable in the sense
that the control store can be updated at any time, allow-
ing an unlimited number of tasks to benefit from WC path
optimizations. Using microinstructions to implement sub-
tasks is predictable in two senses: (1) execution timings
are not data-dependent, and (2) resource consumption is
easily computed [28]. However, the speed of each subtask
is limited by the microarchitecture and the input program.

This paper explores the issues that limit WCET re-

H 8192 bits, 2 units
140r| mEE 16384 bits, 2 units
[24576 bits, 3 units
120f| 3 32768 bits, 3 units
[65536 bits, 3 units

Total Gain Versus Inst. Sp., percent

bs
bubble
cnt
crc
div
duff
edn
expin
fdct
fibcall
fir
sertsort
complex
jfdctin
Matmult
ndes
ns

«n
a
o
S
g

Figure 3. WCET reductions with various
MCGREP-2 configurations using various
benchmark programs.

duction within a general adaptive reconfigurable system,
based on our research for the MCGREP-2 CPU project
and its associated WCET reduction algorithms [25, 28].
We assume that WCET reduction begins with a task spec-
ified in a software language such as C, and then proceeds
through a fully automatic process described in previous
work [17,21,28] (such processes follow the general outline
of Figure 1). We consider WCET reduction algorithms
making use of scratchpads, locked caches, co-processors
and run-time reconfigurable hardware [11], such as a field
programmable gate array (FPGA).

Although WCET reductions can be achieved using the
MCGREP-2 WCS, the execution time improvements that
have been demonstrated are currently limited to about 50-
150% [25] over an instruction scratchpad [17,21] (Figure
3). Independent of the architecture actually used to im-
plement the WCS [27], and independent of the technology
used to apply WCET reductions [28], the magnitude of the
possible reduction is limited by three major factors. These
are: (1) the ILP available within the task, (2) the cost of
loading the control store with the required information,
and (3) the speed of the general-purpose microarchitec-
ture that executes the microinstructions. These factors ap-
ply to any WCET reduction process, whether it is based
on a scratchpad, locked cache, or some form of run-time
reconfigurable hardware. The issues related to each are
examined in sections 2, 3 and 4. Section 5 concludes.

2 The ILP Limitation

The ILP available within each task is influenced by both
the source code and the compiler. WCET reduction ap-
proaches that operate by allocating instruction scratchpad
or lockable cache space [3,17,21] do not consider ILP in
code since conventional machine instructions are sequen-
tial. Trace scratchpad allocation approaches [28] do con-
sider ILP, as machine instructions are converted into ex-
plicitly parallel code for storage in the WCS. This sim-
plifies WCET analysis, but also implies that the degree of

WCET reduction is limited by the ILP in the task.

In many programs, the degree of ILP is limited to two or
three instructions within a single basic block, and around
twice that number if basic block boundaries can be ig-
nored through speculation [22]. This is a hard limit on
WCET reduction for general software. For ACET reduc-
tion, the limit is approached by current superscalar CPU
designs, and some of the same principles can be applied
for WCET reduction [28]. Reaching this limit is an im-
plementation challenge requiring the design of superscalar
CPU pipelines that are also amenable to timing analysis.

Obtaining WCET reductions beyond the ILP limit is a
language issue. Tasks that are vecrorisable can be par-
allelised across a very large number of processing ele-
ments [22], because most subtasks are independent of each
other. However, not all programming languages allow vec-
torisable code to be declared. A limited form of auto-
matic vectorization is provided by modulo scheduling [4],
but in general a specialist language is needed. The com-
piler needs additional information about data and control
dependences in order to be able to arrange the subtasks
for vector processing. Dataflow languages provide the re-
quired features, allowing both coarse-grained [5, 9] and
fine-grained [30] reconfigurable arrays to be programmed.
More conventional languages can also support extensions
for vectorization, e.g. [12].

3 The Load Cost Limitation

Regardless of whether WCET reductions are provided
by a scratchpad, locked cache or run-time reconfigurable
hardware, a loading time cost is incurred whenever the
configuration is updated. Some WCET reduction algo-
rithms assume that loading takes place before task start-
up [21, 28], but this is restrictive because it places a limit
on the complexity of each task. This limit also applies to
WCET reduction approaches that make use of fixed co-
processors, since these are not run-time reconfigurable.
The solution is to allow loading during execution and in-
corporate it into the WCET reduction process [17], af-
ter partitioning each task into regions with local memory
maps [16]. The total loading time must be less than the
total WCET reduction that is achieved.

Loading costs for scratchpads and locked caches
are small, since burst-mode transfers can be used to
rapidly move information from large external memory into
smaller scratchpads. In a task with sufficient temporal lo-
cality on the WC path (e.g. many loops), loading time
will be significantly smaller than the WCET for both in-
struction scratchpads [17] and a WCS [25]. However, the
degree of temporal locality that is required is higher. If one
instruction can be loaded into an instruction scratchpad in
a single clock cycle, and then executed in a single clock
cycle, then that instruction only needs to be executed twice
to recover the cost of loading the scratchpad. But microin-
structions are often larger than conventional instructions,
and consequently more executions are required to recover

to other units

Writable
| control store

Control logic

0 LOINNODYHLNI

Address Mux

To shared components

to other units

to other units

T LOANNODYHLNI

to other units

INTERCONNECT 1

ArAR [N

INTERCONNECT 0

W) [EA]

MCGREP-2 Units

]

1 Memory
External - interface
RAM and/or

-

Microprogram data

Figure 2. MCGREP-2 CPU: one array unit (left) and top level (right). MCGREP-2 is a
simple form of coarse grained reconfigurable architecture (CGRA) in which each array unit
is a small CPU capable of executing code from a writable control store, which can be used

to reduce task WCETs.

the loading cost.

Loading can be carried out in parallel with task execu-
tion by introducing a direct memory access (DMA) con-
troller to manage the copying process. A second task
may be executed during the loading process, or the first
task may continue execution as information is loaded into
scratchpad for use in the near future. Both techniques have
been previously explored by research into overlaying [14]
and are implemented by modern CPU architectures in the
form of simultaneous multithreading (SMT) and cache fill-
ing. Predictable forms of these dynamic operations could
be used to eliminate effective loading costs in some cases.

We believe that loading costs are likely to become a
significant problem for some systems. Run-time reconfig-
urable hardware loading costs can be very large: typical
FPGA bitstream sizes are given by [30]. Run-time recon-
figurable systems may include decompression modules to
reduce the cost [11]. Consequently, a very high degree of
temporal locality is required to reduce the overall WCET
unless loading costs can be eliminated by parallel opera-
tion.

4 The General Purpose CPU Architecture
Limitation

Perhaps the most serious limitation of present WCET
reduction approaches is the assumption that a general pur-
pose architecture is used. A conventional general-purpose
CPU is assumed by instruction scratchpad and locked
cache allocation approaches [3, 17, 21]. Although the
MCGREP-2 CPU is extensible with application-specific
instruction set processor (ASIP) features [6], such as cus-
tom instructions to accelerate WC path execution, these
must be declared and applied explicitly by the program-
mer. Automatic WCET reduction algorithms for scratch-
pads only make use of standard ALU features at present.

CGRA architectures [5, 9] provide arrays that are spe-
cialized for vectorisable code. Mapping subtasks to
such architectures is one way to reduce WCET, but large

CGRAs are not suitable for general programs because in-
sufficient ILP is available. The same problem applies to
fine-grained arrays such as FPGAs, but these can pro-
vide even greater reductions because the logic gates can
be specialized to a particular task. Automatic ASIP cus-
tom instruction selection for WCET reduction has been
explored [31], and it is known that large ACET [13] and
WCET [23] reductions are possible by migrating software
into FPGA hardware, even without vectorisable code.
Since run-time reconfiguration can be used to load task-
specific hardware, customized hardware could be used in
a similar manner to an instruction scratchpad or WCS, but
with greater potential WCET reductions than either ap-
proach.

However, the search algorithms used to find the best al-
locations for WCET reduction become far more complex,
since it is not easy to calculate the resource consumption
of each allocation decision. To get an exact answer, a
complete FPGA or ASIC synthesis process must be ex-
ecuted with all chosen components in place, and this is
computationally expensive. Estimation is commonly used
instead [29,31], but this lowers the accuracy of allocation
decisions and is likely to lead to poor utilization of space,
or backtracking in the event of an overestimate. Scratch-
pad allocation algorithms can make use of all available
space [17,28] because exact computation of resource us-
age is very fast, and backtracking is not necessary [21].

We believe that WCET reduction using custom hard-
ware is a form of co-design problem, and therefore NP-
hard [19]. However, with appropriate restrictions and as-
sumptions, WCET reduction can nevertheless be applied
effectively using custom hardware. For example, run-time
reconfigurable modules (e.g. [11]) of fixed size could be
generated to provide WCET reductions to specific sub-
tasks: this would isolate the WCET reduction process
from the considerations of resource consumption and on-
chip communication.

5 Conclusion

This paper has explored three issues that affect the de-
gree of WCET reduction available for tasks in an adaptable
architecture. Major challenges exist: specifying vectoriza-
tion in order to exploit greater ILP is important [22], as is
minimizing loading time costs [17]. Finding a way to ap-
ply WCET reduction algorithms to custom hardware may
be the most rewarding challenge, as large execution time
reductions are possible [13,23] if the technical issues of ef-
ficiently searching for the best resource allocation can be
solved. These problems have been given only partial con-
sideration by existing work. Solutions would allow em-
bedded real-time systems to carry out more operations per
time unit by explicitly reducing the WCET of each task.

References

[1] A. Burns and A. J. Wellings. Real-Time Systems and Pro-

gramming Languages. Addison Wesley, 2001.
[2] R. Ernst, J. Henkel, and T. Benner. Hardware-software

cosynthesis for microcontrollers. IEEE Des. Test, 10(4):64—

75, 1993.
[3] H. Falk, S. Plazar, and H. Theiling. Compile-time decided

instruction cache locking using worst-case execution paths.
In Proc. CODES+ISSS, pages 143-148, New York, NY,

USA, 2007. ACM Press.
[4] J. Fisher, P. Faraboschi, and C. Young. Embedded Com-

puting: A VLIW Approach to Architecture, Compilers and

Tools. Morgan Kaufmann, 2004.
[5] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,

and R. R. Taylor. PipeRench: A reconfigurable architecture

and compiler. Computer, 33(4):70-77, 2000.
[6] R. E. Gonzalez. Xtensa — A configurable and extensible

processor. IEEE Micro, 20(2):60-70, 2000.
[7]1 B. Grattan, G. Stitt, and F. Vahid. Codesign-extended appli-

cations. In Proc. 10th Int. Symp. Hardware/Software Code-
sign, pages 1-6, 2002.

[8] R. K. Gupta and G. D. Micheli. Hardware-software cosyn-
thesis for digital systems. [EEE Des. Test, 10(3):29-41,

1993.
[9] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger.

KressArray Xplorer: a new CAD environment to optimize
reconfigurable datapath array. In Proc. ASP-DAC, pages

163-168, New York, NY, USA, 2000. ACM Press.
[10] R. Heckmann, M. Langenbach, S. Thesing, and R. Wil-

helm. The influence of processor architecture on the design
and the results of WCET tools. Proc. IEEE, 91(7):1038-

1054, 2003.
[11] M. Hubner and J. Becker. Exploiting dynamic and partial

reconfiguration for FPGAs: toolflow, architecture and sys-
tem integration. In Proc. SBCCI, pages 1-4, New York, NY,

USA, 2006. ACM Press.
[12] Intel. Optimizing Applications with the Intel C++

and Fortran Compilers (accessed 26 April 07).
ftp://download.intel.com/software/
products/compilers/techtopics/Compiler_
Optimization_7_02.pdf, 2004.

[13] R. Lysecky, G. Stitt, and F. Vahid. Warp processors. ACM

TODAES, 11(3):659-681, 2006.
[14] R.J. Pankhurst. Operating systems: Program overlay tech-

niques. Commun. ACM, 11(2):119-125, 1968.
[15] D. A. Patterson and J. L. Hennessy. Computer organiza-

tion & design: the hardware/software interface. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[16] I. Puaut and D. Hardy. Predictable paging in real-time sys-
tems: A compiler approach. In Proc. ECRTS, pages 169—
178, Washington, DC, USA, 2007. IEEE Computer Society.

[17] 1. Puaut and C. Pais. Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison. In
Proc. DATE, pages 1484—1489, San Jose, CA, USA, 2007.
EDA Consortium.

[18] P. Puschner and A. Burns. Guest editorial: A review of
worst-case execution-time analysis. Real-Time Syst., 18(2-
3):115-128, 2000.

[19] R. Niemann and P. Marwedel. Hardware/software par-
titioning using integer programming. In Proceedings of
the European Design and Test Conference (ED & TC),
pages 473-480, Paris, France, 1996. IEEE Computer So-
ciety Press (Los Alamitos, California).

[20] R. F. Rosin, G. Frieder, and J. Richard H. Eckhouse. An
environment for research in microprogramming and emula-
tion. Commun. ACM, 15(8):748-760, 1972.

[21] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET Centric Data Allocation to Scratchpad Memory. In
Proc. RTSS, pages 223-232, Washington, DC, USA, 2005.
IEEE Computer Society.

[22] D. W. Wall. Limits of Instruction-Level Parallelism. Tech-
nical Report WRL-93-6, DEC Western Research Labora-
tory, 1995.

[23] M. Ward and N. Audsley. Hardware compilation of se-
quential Ada. In Proc. CASES, pages 99-107, New York,
NY, USA, 2001. ACM Press.

[24] 1. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles
of timing anomalies in superscalar processors. In Proc. Int.
Conf. Quality Software, Sep. 2005.

[25] J. Whitham. Real-time Processor Architectures for Worst
Case Execution Time Reduction. PhD thesis, 2008.

[26] J. Whitham and N. Audsley. MCGREP - A Predictable
Architecture for Embedded Real-time Systems. In Proc.
RTSS, pages 13-24, 2006.

[27] J. Whitham and N. Audsley. A self-optimising simula-
tor for a coarse-grained reconfigurable array. In Proc. UK
Embedded Forum, pages 99—109. University of Newcastle,
April 2007.

[28] J. Whitham and N. Audsley. Using trace scratchpads to re-
duce execution times in predictable real-time architectures.
In Proc. RTAS (to appear), 2008.

[29] Y. Xie and W. Wolf. Co-synthesis with custom asics. In
Proc. ASP-DAC, pages 129-134, 2000.

[30] Xilinx. Virtex-4 Family Overview. Datasheet DS112, Xil-
inx Corporation, 2007.

[31] P. Yu and T. Mitra. Satisfying real-time constraints with
custom instructions. In Proc. CODES+ISSS, pages 166—
171, 2005.

