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Abstract

Instruction scratchpads have been previously suggested
as a way to reduce the worst case execution time (WCET)
of hard real-time programs without introducing the analy-
sis issues posed by caches. Trace scratchpads extend this
paradigm with support for instruction level parallelism
(ILP) while preserving simplicity of WCET analysis. In
this paper, we demonstrate trace scratchpads using the
MCGREP-2 CPU architecture. We provide a sample al-
gorithm to automatically reduce the WCET of a program
using a trace scratchpad, and compare the results with the
use of an instruction scratchpad.

We find that the two types of scratchpad are best used
together. Instruction scratchpads provide excellent WCET
improvements at low cost, but trace scratchpads reduce
WCET further by optimizing worst case (WC) paths and
exploiting ILP across basic block boundaries. Using our
experimental implementation, we have observed WCET
improvements over an instruction scratchpad of up to
149% with some Mdlardalen WCET benchmarks.

1 Introduction

Instruction caches are widely used within computer
systems to compensate for memory access latencies
caused by the speed disparity between RAM and CPU.
In an embedded real-time system (RTS), this causes prob-
lems for worst case execution time (WCET) analysis [22],
and consequently for schedulability analysis [5], because
of the difficulty of predicting the dynamic state of the
cache as programs run. [Instruction scratchpads [28]
are an architectural solution to this problem, replacing a
cache with a static (or program-controlled) memory ele-
ment that can reduce WCET without complicating tim-
ing analysis [20, 29, 33]. However, instruction scratch-
pads contain only sequential machine code, so instruction
level parallelism (ILP) in programs can only be exploited
by optimizations that are applied dynamically within the
CPU. Since dynamic CPU operations are known to create
WCET analysis difficulties [13, 16, 34], this places a limit
on the WCET reductions possible using only an instruc-
tion scratchpad, and poses the question of how the ILP in
the machine code can be exploited without complicating

analysis.

Trace scratchpads contain explicitly parallel code
(traces), generated from software by a post compilation
step. Our traces are functionally equivalent to (and used
in place of) the machine code of the worst case execution
paths (WC paths [9]) in a program, but the execution time
of each path is reduced predictably by parallelisation. We
show that the timing effects of traces can be modeled using
the implicit path enumeration technique for WCET analy-
sis (IPET) [15,23], so that the overall WCET is reduced by
a known bound. We are able to apply IPET as described
in [23] because basic block execution times are indepen-
dent of execution history when dynamically adaptive fea-
tures are replaced by scratchpads. We generate traces from
machine code to remove any need to extend a standard C
compiler for embedded systems and demonstrate the ap-
plicability of our technique to any program independent of
the source language. This choice simplifies implementa-
tion, but improved results could undoubtedly be obtained
by extending a compiler to emit additional information
about the code.

The limited space in any scratchpad has to be allocated
to program components during or after compilation [27].
There is a general challenge to find space-allocating al-
gorithms to satisfy a goal such as energy usage reduc-
tion [14,28] or WCET reduction. Algorithms for the latter
problem have been proposed for instruction scratchpads
by Wehmeyer and Marwedel [33], Suhendra et al. [29] and
Puaut and Pais [20]. In [9], Falk et al. consider the related
problem of allocating space in a locked instruction cache
for WCET reduction. However, none of these algorithms
are directly applicable to trace scratchpads because each
trace has an additional “length” parameter to be selected
during allocation, and this has no equivalent in instruc-
tion scratchpad or locked cache allocation problems. So
we also propose and evaluate a new algorithm to allocate
trace scratchpad space.

The parts of this paper are as follows: the next section
characterizes trace scratchpads, and section 3 describes
our algorithm for allocating trace scratchpad space. We
describe how we generate traces in section 4, and describe
our test environment in section 5. Section 6 has experi-
mental results, and section 7 has related work.
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Figure 1. (a) A typical cached architecture, showing possible locations of an instruction
cache [18] and a trace cache [25] in relation to CPU components. (b) An instruction scratch-
pad is a more predictable replacement for an instruction cache [20,29]. (c) A trace scratchpad
is part of the CPU pipeline, and can directly control CPU components without decoding.
It is also possible to combine scratchpads with caches, for example to reduce energy con-
sumption [14], but this is not considered here.

2 Characterizing a Trace Scratchpad

A trace scratchpad is a high-speed RAM integrated into
a CPU pipeline, with size and access latency both similar
to a cache or instruction scratchpad [27]. But unlike an in-
struction cache (Figure 1(a)) or an instruction scratchpad
(Figure 1(b)), trace scratchpads store microinstructions:
each of which may contain a number of distinct micro-
operations. These directly control CPU functional units
without any intermediate decoding stage (Figure 1(c)).

An instruction scratchpad stores conventional machine
code, and in many architectures, each machine code in-
struction specifies just one microoperation, so any ILP
must be discovered dynamically by the CPU. In contrast,
the microinstructions stored in a trace scratchpad can ex-
plicitly issue microoperations to CPU resources in parallel.

An instruction scratchpad is found on the instruction
bus and is part of the memory map. Programs can move
between execution from RAM and execution from instruc-
tion scratchpad using only a jump instruction (Figure 2).
But trace scratchpads are not part of the memory map, so
a custom instruction is embedded in the program whenever
a trace execution should begin. This changes the source of
microoperations, from the instruction decoder to the trace
scratchpad. Fetching and decoding are suspended while
the trace executes. The trace returns control to machine
code when it finishes by issuing an “end of trace” micro-
operation.

Both types of scratchpad have to be explicitly updated
by “copy points” in a program [27], unlike trace caches
and instruction caches which are dynamically updated by
program execution (Figure 3). This can save energy [14],
but it also makes scratchpad operation highly predictable
because the contents, and consequently the runtime behav-
ior, are precisely known during WCET analysis [20,29].

2.1 Characterizing a Trace

Instruction scratchpads are easy to update because ba-
sic blocks (which contain only sequential machine code)
can simply be copied from external RAM to scratchpad.

Program Program Program
in external in scratch in external
RAM pad: faster RAM
access
JUMP JUMP JUMP ——

Figure 2. Scratchpad execution paradigm.
Instruction scratchpads, trace scratch-
pads and external RAM hold executable
code. Programs can be distributed across
all three: execution can jump from any
one to any other.

In contrast, trace scratchpads require machine code to be
processed by a trace generator.

Traces [12] were first proposed by Fisher [11] and have
been widely used to generate very long instruction word
(VLIW) machine code. A trace includes multiple ba-
sic blocks, concatenated together according to a heuris-
tic that conventionally minimizes average case execution
time (ACET) by making the most likely code path take
less time by parallelising operations along that path (Fig-
ure 4). The function of the traced code is identical to the
original machine code. Conditional branches are treated
as assumptions about the most likely code path. These
assumptions are evaluated during execution: if they are
correct, then trace execution continues. Otherwise a mis-
prediction has occurred and an exit is taken. Trace ex-
its ensure that the CPU is in a consistent state for another
part of the program. This is done by copying registers and
undoing the effects of speculation (executing operations
before evaluating all of their preconditions). Early trace
formation algorithms required complex handling for side
entrances, where one trace joins another [11], but imple-
mentation can be simplified by the use of superblocks [6],
which are restricted traces with no side entrances.

Traces can be used to reduce WCET by using a forma-
tion heuristic that aims to optimize the WC path [9]: this
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Figure 3. How trace scratchpads are
related to previous work: instruction
caches [18], trace caches [25], and instruc-
tion scratchpads [20,29].

formation

Figure 4. Trace formation example. Ex-
ecution of WC path [BB1, BB2, BB3] is
optimized. The functional correctness of
other paths (e.g. [BB1l, BB4, BB5]) is
preserved.

has been previously applied by Zhao [38] in a compiler
optimization context. Janapsatya [14] has previously com-
bined trace formation with instruction scratchpads in order
to reduce energy consumption. However, neither approach
considers predictable exploitation of ILP or trace selection
using an IPET-based methodology (see next section).

3 Issue 1: Allocating Scratchpad Space

A code allocation process must choose a subset of com-
ponents from a program G for migration to a scratchpad
of size C),4,. Trace scratchpads are not suitable for data
storage, so we do not consider the issue of data allocation,
and instead recommend the use of an existing scheme for
WCET reduction by data scratchpad allocation such as the
work of Suhendra et al. [29], which can coexist with a
trace scratchpad. (Suhendra’s approach is applicable to
both instruction and data scratchpad allocation.)

Previous work [28, 33] has allocated instruction
scratchpad space by using a knapsack problem solving al-
gorithm to trade the benefit of each allocation B, against
the scratchpad space cost C, for every basic block b(e).
However, such knapsack-based approaches assume that al-
locations will be independent of each other, which is suit-
able for ACET improvement and energy reduction, but not
necessarily for WCET reduction where a new WC path
might be introduced by any change to any local execution
time cost. In [9], Falk et al. classify WCET reduction ap-
proaches that do not find new WC paths after each taken
decision as single-path analyses, and observes that they

procedure Find_Candidates(G):
G = program as T-graph [23]
H = max. number of WC paths to find
L =longest trace to consider
W = number of starting points to consider per step
0=10
D=
for ¢ from 1 to H:
Zo = Calculate WCET(Ge) // see section 3.1
(V,E)=G // members of E represent basic blocks
Compute_Scores(G) // see Figure 6
1) sort F in order of e.score
for j from 1 to W:
repeat:
e=pop(E) // get “highest scoring” block in &
until e is a valid start point for a trace

2 P. = Find_-WC_Path(G,e,0,L) //see Figure 7
3) Te = Generate_Trace(P.) // see section 4
Z. = Calculate WCET(Gou(r,})
4) Be =20 — Ze // find benefit of this trace
end for
5) find e such that B, is maximized

for k from 1 to L:
P. . = Find_ WC_Path(G, e, 0, k)
T. 1 = Generate_Trace(P. 1)
Ze i = Calculate WCET(Geouyr, ;1)
(6) C.,, = space cost of trace T i,
Bek =Zo — Ze . // benefit of this trace
if Be i, > Be then:

(7) Be - Be,k
Te - Te,k
end if
end for
8) 0 =0U{T.}
D =D+ e
end for

end procedure

Figure 5. The Find Candidates procedure
finds and evaluates candidate traces.

are not optimal. (Similar observations appear in [20,29].)
So we repeat the WCET analysis after each allocation.

Allocating trace scratchpad space for WCET reduction
is even more difficult than either locked instruction cache
allocation (considered by Falk [9]) or scratchpad alloca-
tion (considered by Suhendra [29]) because traces are pa-
rameterised by both starting point and length. (We con-
sider the length of a trace to be the number of branch in-
structions that it includes.) Increasing length may lead to
further WCET reductions, but more scratchpad space is re-
quired. So the allocation process needs to (1) select good
trace starting points, and (2) select good lengths for each
trace, and also (3) account for possible dependences be-
tween traces. Our algorithm is as follows:

1. Find candidate traces using the procedure shown in
Figure 5. This repeatedly: (1) identifies the basic blocks
that currently make the greatest contribution to WCET us-



procedure Compute_Scores(G):
(V,E) = G
fore € E:
P, = Find_ WC_Path(G, e, e, 0)
e.domcost=)"__, (z)
end for )
fore € E:
P, = Find_ WC_Path(G, e, e, c0)
escore =), x.dom_cost x f(z)
end for
end procedure

Figure 6. Heuristic to evaluate the score
of each basic block: this is an indication
of its contribution to WCET.

ing the score heuristic (Figure 6), then (2) finds the WC
paths starting at W of these using the Find_WC_Path func-
tion (Figure 7), assuming that the path length [ is maxi-
mized (I = L). (3) A trace is generated for each of these
paths, and (4) the WCET reduction benefit of that trace
is computed. (5) The algorithm chooses the trace start-
ing point e with the greatest benefit B,, then (6) evaluates
the cost and benefit of traces with lengths from 1 to L be-
ginning at e. The trace with the highest benefit is found
(7), then added to the program (8). This final step ensures
that subsequent iterations will take representatives of the
chosen traces into account, enabling new WC paths to be
found once earlier ones have been eliminated. However,
these representatives do not necessarily become part of the
final allocation.

2. Solve an knapsack-like problem to calculate which
of the candidate traces T, ; should be selected in order to
maximize the total benefit, while keeping the total space
cost within the scratchpad size limit. This is similar
to a pure knapsack algorithm, as previously applied for
scratchpad allocation [27, 33], but it is extended by two
new constraints: (1) traces of different lengths k£ and a
common start point e are mutually exclusive, and (2) traces
can only be allocated in the order they were added to ©, to
ensure that WC paths are always allocated in order of their
effect on WCET.

3. Finally, evaluate the WCET of the program with the
selected traces.

The algorithm carries out HW + HL + 1 WCET com-
putations by IPET, each of which involves finding a solu-
tion to a integer linear program. This is NP-hard in gen-
eral. However, Li and Malik state that “if we restrict our
functionality constraints to those that correspond to the
constructs in the IDL language [proposed by Park [19]],
then the... problem is equivalent to a network flow prob-
lem, which can be solved in polynomial time” [15]. There-
fore, although exponential time may be required to run the
algorithm in some cases, practical programs can avoid this
by limiting the constraints that are used.

Our algorithm relies on some heuristic assumptions to

function Find_WC_Path(G, e1, en,1):
ifl Z0ANe1 # en:
(VE) = G
(Uo, U1) =ée1
if [{va : (vi,v2) € E}| > 1t
// ex is followed by a branch
l=1-1
end if
for (vi,v2) € E:
if F((v1,02)) > Lf(er):
return [e1]+ Find_-WC_Path(G, (v1, v2), en, )
end if
end for
end if
return [e;]
end function

Figure 7. Heuristic to find a subsequence
of basic blocks within the WC path, be-
ginning at basic block e¢; and ending at
either e, or after | branch points.

= At hnd hho exit
flow: 107 BBI+BB3tBB4BES | — ot BB6 [
exit flow: 2
flow: 2 flow: 2 o

Figure 8. A trace. BB1, BB3, and BB4
are always executed as part of the trace,
but BB2 is reached after a trace exit.
Consequently, BB5 may be executed ei-
ther as part of the trace or as machine
code. IPET constraints account for this.

cut down the search space: (1) that the best trace starting
points can be identified by looking at the WCET contri-
butions of each basic block; (2) that it is sufficient to con-
sider only a limited number (W, L or H) of “most likely”
choices at each decision point using the score heuristic;
and (3) that a trace at starting point e with length [ < L can
be represented in the IPET model by a trace with the same
starting point e and length L. However, these assumptions
only affect the quality of the final allocation. The safety of
the WCET computation is dependent only on the correct-
ness of our IPET model, because the effects of each trace
are always checked using an IPET computation.

3.1 Trace IPET Model

Traces need to be incorporated into a WCET analysis
model so that their effects on WC paths can be computed.
This modeling is more complex than instruction scratch-
pad modeling, where only the execution cost y(e) of an
individual basic block b(e) needs to be adjusted to evalu-
ate the effect of moving that block into scratchpad. The ex-
tra complexity comes from control flow surrounding each
trace: an example is shown in Figure 8, where BB5 may



be executed outside the trace (as machine code) or as part
of the trace, and therefore has two different execution time
costs.

The IPET approach for WCET analysis [15, 23] pro-
vides an elegant way to model the maximum execution
time of general programs, and also identifies WC paths. It
can be extended to model the effects of traces by introduc-
ing new problem constraints for each traced basic block.
(The number of new constraints introduced by a trace is
O(n) in the trace length.)

In [23], Puschner and Schedl describe IPET using a
timing graph (T-graph) G = (V, E) to represent program
structure. The approach is summarized as follows. Each
edge of the T-graph = € FE represents a basic block b(z).
~(z) is a constant representing the execution time cost of
b(x), and f(z) is a non-negative integer variable repre-
senting the worst-case flow (WC flow) through that ba-
sic block. The WC flow is the number of times that ba-
sic block is executed in the worst case. Each f(z) is
computed by solving an integer linear program to max-
imize the WCET Zg = ) _p7(v)f(x) for a T-graph
G = (V,E). f(z) values are restricted by three types of
constraint, which are expressed as linear equations. These
are: (1) conservation of flow at each T-graph vertex v € V,
(2) behavioral constraints to describe the program, such as
loop bounds and infeasible path information, and (3) rel-
ative capacity constraints, which enforce conservation of
flow for cycles in the T-graph.

This can be extended to allow traces to be modeled as
follows. Let © represent a set of traces for a program G =
(V,E). We wish to determine Zg,: the WCET of the
program plus every trace T, € ©. A trace is considered to
be a set of paths P, ; € T,. Each path P, ; is a sequence
ofedges z € E.

Let ¢(x) represent the set of all contexts in which the
functionality of a basic block b(z) is implemented. This
may include at most one machine code context u(x), and
any number of traced contexts t(P. ;, 7). (Traced contexts
are identified as the j-th member of a path P, ;.) The pur-
pose of this distinction is to allow WC flow to be consid-
ered separately for machine code execution (i.e. f(u(x)))
and for execution in any path (i.e. f(¢t(Pe;,7))). In effect,
a new flow variable is created for each x € E and each
context in y € c(x). Formally, ¢(x) is defined as follows:

{u(@)}U{t(Pey,j) : Te € ©
ANPi€T, Nx=Poi;} (1)

Ve € E,c(x) =

In the Puschner and Schedl IPET model, the total worst-
case flow through z is defined as f(x). This definition is
retained, but now the WC flow through traces and machine
code is separated into distinct symbols within ¢(x). The
relation between f(z) and ¢(z) is:

Ve € B, f(z) = Y f(y) @

y€Ec(z)

If ¢(x) = {u(x)}, then f(u(z)) = f(z): i.e. edges that

are not represented in traces are unaffected by traces. Re-
lationships also need to be defined between new flow vari-
ables. Flow within a trace is conserved:

Va, V3, f(t(Pe,iv a)) = f(t(Pe,h B)) 3

Flow can only enter a trace path P, ; through the entrance
e, where machine code flow is converted into traced flow:

V(vlan) €E, Z f(t(P(m,'ug),iv 1)) =
> ful(vo, ) “

(vo,v1)EE

Flow can only leave a trace path P, ; through its exit,
which is the final member of the sequence, P ; | p, ,|. Flow
then returns to machine code:

V(’UOa’Ul) € E7Zf(t(P(v0,vl),i7 |P(v0,vl),i|)) =

> ful(vm) G

(vi,v2)EE

Additionally, a trace T, always replaces machine code ex-
ecution in the entrance edge e:

Vee B, 3T, = f(u(e)) =0 (6)

As in the original Puschner and Schedl model, flow is also
conserved within machine code execution:

Yo Sl o)) = D flul(vre2) (D

(vo,v1)EE (v1,v2)€E

Equations 1 through 7 define the new flow variables re-
quired to represent any set of traces. However, the execu-
tion time cost of each path is still missing. The execution
cost of machine code v (u(z)) can be calculated as for con-
ventional IPET:

Ve € E,y(u(z)) = v(z) ®)

Each y(¢(Pe,;,t)) can be derived from the total execution
time cost of the path (P, ;), which is produced as a side
effect of trace generation:

V(Pe,i) = Z Y(t(Pes), ) ©)

It is possible to derive each y(¢(P.;), j) using a series of
simultaneous equations: one for each path in 7,. There
may be many possible solutions to these equations, but
all of them are equivalent, because only the fotal execu-
tion time cost of each path is important. Costs can be dis-
tributed to edges in any arrangement that satisfies this. The
only other constraint on each  value is that no cost can be
negative, i.e.: Vo, y(a) > 0.

Other equations such as relative capacity constraints
and behavioral constraints are added as for IPET. Since



#define SORT_SIZE 100
void Benchmark ( void ) { /+ BBO x/
int i , swapped ;

do { /+ BB1l, BB2 x/

swapped = 0 ;
for (1 =0 ; i < ( SORT_SIZE - 1 ) ; 1 ++ ) {
int si0 = to_sort [ i ] ; /% BB3 x/
int sil = to_sort [ 1 + 1 ] ;
if ( si0 > sil ) {
to_sort [ 1 ] = sil ; /% BB4 x/
to_sort [ 1 + 1 ] = si0 ;
swapped = 1 ;
} /+ BB5 %/
} /+x BB6 */
} while ( swapped ) ; /% BB7, BB8 x/

Figure 10. Bubble sort C source.

these apply to f(x) values, they are incorporated into the
model via equation 2. The new WCET is defined as:

Zao =Y. > fwWw) (10)

zEE yec(x)

This definition is equivalent to Puschner and Schedl’s defi-
nition for Z5 when © = (). In the extended model, WCET
is computed by maximizing Zg, with an integer linear
program solver.

Most importantly, Puschner and SchedI’s proof of cor-
rectness also applies to the extended model. This is be-
cause traces do not introduce new execution paths to the
program. They just lower the costs of existing ones. Given
all behavioral constraints, Puschner and Schedl showed
that: (1) if there is exactly one path through a program G
defined as P, = (21,1, ..., ¥1,5), then Z¢ can be correctly
computed; and (2) if there are n paths { Py, ..., P,,} and Z¢
can be correctly computed, then adding a new path P,
preserves the correctness of Z¢. This still applies if traces
are being modeled because the set { P, ..., P, } is the same
regardless of ©. Equations 1 through 10 provide the ex-
tra constraints and execution times required to describe
trace behavior and fulfill the preconditions of Puschner
and Schedl’s proof.

3.2 Example

Consider the C program in Figure 10. Compiling this
program for a RISC-like architecture results in the basic
block graph shown in Figure 9. The time cost of each basic
block «(z) is measured by execution: these are invariants
because dynamically adaptive CPU features are replaced
by a trace scratchpad. A constraint set {BB6 < 100, BB5
< 9900, BB4 < 5000} is added to represent worst-case
behaviour.

The algorithm shown in Figure 5 is executed. The first
algorithm iteration sets h = 1. Using IPET, the original
WCET is calculated as Z¢,, = 1323607 clock cycles.

The next stage of the algorithm adds candidate traces
to the program based on the score heuristic (Figure 6).
The scores for © = () are shown in Table 1. The algo-
rithm evaluates W traces of length L in descending order

Basic Exec. cost WC flow Score
block b(x) y(x) f(z) (© =0) | (Figure 6)
BB3 81 9900 1.54e+06
BB5 33 9900 1.12e+06
BB4 37 5000 7.50e+05

Table 1. Possible trace starting points for
Figure 10, sorted by Score. Costs are
given in clock cycles, obtained using the
MCGREP-2 simulator (section 5).

L” BB3+BB4+BB5+BB3+BB4+BBS5 D

b \c d \e

BB6

Figure 11. Trace with length 4 and start
point BB3 for the example program (Fig-
ure 10).

of score, beginning with BB3. For each trace, this evalua-
tion involves Find_WC_Path (Figure 7), followed by Gen-
erate_Trace, followed by WCET calculation. For the pur-
poses of this example, the parameters are W = H = 3
and L = 4.

Given these settings, the WC path from BB3 of length
Il = L = 4 is [BB3, BB4, BB5, BB3, BB4, BB5]. The
trace that is generated for that path is shown in Figure
11. The generator also produces execution time costs for
each possible path through the trace (Table 2), and finds
the total space cost of the trace (83 scratchpad lines). The
WCET is then calculated: it is reduced to 732707, so the
trace benefit is 590900.

The algorithm then proceeds as described earlier. It
also evaluates traces beginning at BB5 (benefit 990100)
and BB4 (benefit 184800). Of these, BBS gives the high-
est benefit, so it is chosen as a candidate and reevaluated
for each length [ € [1, L] (Table 3). The trace beginning
at BB5 with length 4 is added to O, as it provides the best
benefit with the lowest cost. The algorithm recomputes
each score in the presence of this trace, then continues with

Exit Point Exec. Cost
a 'Y(PBBB a) = 37
b ’y(PBBg, b) =40
C '7(PBBB C) =48
d v(PpB3,a) = 54
e v(PpB3,) = 61

Table 2. Execution costs (clock cycles) for
each path through Figure 11.



BBO cost 59 e

l.addi r1,r1,-0x8 BB1 cost 33
L.sw 0x4(r1),r2 Lsflesi r8,0x62

BB3 cost 81
l.add r3,r4,r9

BB2 cost 33

BB7 cost 37 BBS cost 11

l.addi r2,r1,0x8 Rl Lbnf 22a4
L.sw 0x0(r1),r9 l.addi r7,r0,0x0
l.addi r8,r0,0x0

l.addi r6,r3,0x4
I.movhi r9,0x0 Ll I.lwz r5,0x0(r3) BB4 cost 37
l.ori r9,r9,0x75d0 I.lwz r4,0x0(r6) L.sw 0x0(r3),r4 BB5 cost 33
l.addi r8,r0,0x1

1.sw 0XO(r6),r5 1.bf 2270
w|

I.lwz r9,0x0(r1)
I.lwz r2,0x4(r1)
BB6 cost 33 Ljr r9

I.sfnei r8,0x0
I.slli r4,r7,0x2 I.bf 2258

l.addi r1,r1,0x8
end program

| lsflesir7,0x62

L.slli r4,r7,0x2 I.sfles r5,r4
I.bf 2298
l.addi r7,r7,0x1

l.addi r8,r0,0x0
4

Figure 9. Basic block graph for Figure 10.

Length ! | WCET Reduction
0 29700
1 830900
2 661800
3 990100

Table 3. WCET reductions obtained with
different trace lengths beginning at BB5.

h =2.

Other traces are evaluated. In the second iteration, start
points BB1 (benefit 6100), BB2 (benefit 2900) and BB3
(benefit 4900) are tested. The best is BB1, with length 2.
In the third iteration, start point BB6 (benefit 300) is tested.
The best is BB6, with length 1. Because this example is
very small, there is space for all three traces in the scratch-
pad. For larger programs, solving the extended knapsack
problem would eliminate traces with marginal benefits. In
this case, all three can be included. The resulting WCET
is computed as 322807. Further reductions are possible
by increasing L: for example, setting L = 20 widens the
search and results in a WCET of 190639. However, ad-
justing H and W makes very little difference to this small
program because practically all WC execution occurs in
the [BB3, BB4, BB5] inner loop. There are no significant
WC paths outside that loop.

4 Issue 2: Making Traces

The allocation algorithm requires space and time costs
for each trace model, and our experimental implementa-
tion requires traces to be generated for performance mea-
surement. Therefore, we have implemented a trace gen-
erator based on superblocks as described by Chang et
al. [6]: these traces have only one entry point [12]. Our
superblocks differ from previous work in the following
ways:

e The source for the trace generator is machine code.
This avoids the need to extend a standard C compiler
and allows the approach to be applied to any code, in-
cluding programs not written in C, unstructured pro-
grams and closed-source libraries. This choice sim-
plifies implementation, but better results could be ob-
tained by a specialist compiler. For example, a VLIW
compiler [12] has access to all data about a program
(e.g. the abstract syntax tree), and may use any of this
information to generate more efficient superblocks.

e Our environment effectively has two instruction set
architectures (ISAs): (1) microinstructions from a
trace scratchpad, and (2) machine code from an in-
struction scratchpad or RAM. Conventional VLIW
CPUs have only one ISA, and thus the execution of
one trace always leads to the execution of another.
But that approach is only possible through the use of
an instruction cache. Therefore, our trace exits only
lead directly to a trace entrance when a trace is be-
ing restarted (for example, within a loop). Otherwise,
trace exits return to machine code execution. In this
way, each trace is independent of all others, and any
code can be supported by machine code execution if
a suitable trace is not present.

e Our traces are formed along WC paths (see Figure
7). In contrast, VLIW compilers usually try to min-
imize ACET, and therefore aim for the most likely
path. WC path-based trace formation has been previ-
ously applied by Zhao [38] within a compiler frame-
work.

Any superblock formation algorithm could be used to
build traces, but as the input is machine code, we were led
towards a particular choice. We based our experiments on
Sohi’s out of order superscalar issue algorithm [26], which
has previously been implemented as a dynamic CPU com-
ponent (e.g. in the Simplescalar simulator [4]). Sohi’s al-
gorithm is designed to work from machine code and offers
an elegant approach for handling exceptions and branch
mispredictions, which we use to generate trace exits.

We believe that the low-level implementation details of
our modifications to Sohi’s algorithm are unimportant as
any trace generating algorithm could be used (e.g. [6,11]).
However, high-level changes such as the following will be
required:

1. The microoperations provided as input for trace for-
mation, e.g. the register update unit (RUU, [26])
come from a software queue rather than hardware
(cache or RAM).

2. For the main part of each trace, the queue is filled
by selecting sequential machine code along the WC
path. Branch operations are also placed in the queue,
but each is remapped to generate an exception in non-
WC conditions: a trace exit to handle a misprediction.
In contrast, Sohi’s algorithm assumes that branches
always follow average case paths.



3. On each iteration, Sohi’s algorithm produces at most
one microoperation to be executed by each functional
unit. This information is encoded as a microinstruc-
tion and added to the trace. A more conventional im-
plementation of the algorithm would execute the mi-
crooperations immediately.

4. Exceptions are handled by copying the state of the
trace generator at each point where an exception
might occur, then processing the exception using the
copy. This generates an exit handler for the trace,
which is placed after the main part of the trace within
the scratchpad. The exit handler is reached by a
branch microoperation that is embedded in the main
part of the trace after copying.

5. Dynamic memory disambiguation is omitted.

6. Code is added to evaluate time and space costs. The
total space cost is the number of generated microin-
structions. There is a different execution time cost for
each exit, based on the number of microinstructions
executed on that path. Time costs are added to the
T-graph.

5 Evaluation Environment

In order to obtain measurements of trace performance
from sample programs, we require a CPU with an inte-
grated trace scratchpad. Unfortunately, adding a trace to
an existing CPU design is not easy. We would need to (1)
expose the CPU internals so that they can be operated by
the trace scratchpad in addition to the existing control unit,
and (2) write a program to encode microoperations for the
scratchpad memory. Although such changes are possible
in principle for any CPU, few CPU designs enable them.

However, we have previously built the MCGREP
CPU [35] in which the microoperation layer is (a) exten-
sible, and (b) exposed for external programming through
a C application program interface (API). The current ver-
sion, MCGREP-2, is a configurable soft core for field pro-
grammable gate array (FPGA) devices (Figure 12) with a
cycle accurate simulator [36].

The MCGREP-2 CPU can execute conventional ma-
chine code from external RAM or an instruction scratch-
pad, and basic block execution times are independent of
execution history. Custom instructions embedded in ma-
chine code cause the CPU to stop interpreting machine
code and begin executing a trace from scratchpad. (Ma-
chine code is interpreted by a microprogram that occupies
areserved area of the trace scratchpad.) History dependent
timing effects caused by pipeline interleaving are avoided
by using a three stage pipeline and a single-slot delayed
branch scheme.

The machine code understood by MCGREP-2 is the
OpenRISC ORBIS32 ISA, described in [7]. This ISA is
also the input code for our trace formation algorithm (sec-
tion 4). This enables us to build programs for a regu-
lar OpenRISC CPU with the unmodified OpenRISC gcc

Memory Type Latency
Inst. Scratchpad 1
Inst. External RAM 10
Data Scratchpad 1

Table 4. Memory timings for evaluation
model. Note: a trace scratchpad is inte-
grated into the CPU pipeline, and there-
fore has no effective latency.

compiler, and then apply scratchpad allocation as a post
compilation step: this approach is flexible and demon-
strates the compiler-independent nature of our work. The
disadvantage is that our traces are limited by the ORBIS32
ISA: integrating trace generation into the compiler would
improve our results.

6 Evaluation: Comparison with Instruction
Scratchpads

In this section, we compare the WCET reductions avail-
able using different scratchpad configurations, using both
computed WCETs (from IPET) and measured execution
times from our MCGREP-2 implementation. We assume
the memory timings shown in Table 4: the data scratchpad
is assumed to be large enough to hold all data. In practice,
a technique such as [29] could be used to allocate the most
important data elements to the scratchpad with similar ef-
fect.

We also assume that instruction scratchpad space is al-
located using a modification to the algorithm in section 3
that substitutes “basic blocks” for “traces”. This restric-
tion sets L = 1 since basic blocks do not have a length.
(We also set H = 1000 so that the instruction scratch-
pad can be completely filled. None of the benchmark
programs include more than 1000 basic blocks, but some
are large enough to fill the instruction scratchpad.) With
these parameter settings, our algorithm is very similar to
the “greedy heuristic” for instruction scratchpad allocation
described previously in [29].

For trace scratchpad allocation, the constants are set as
shown in Table 5. Higher values of these constants in-
crease the size of the search space to be evaluated. Better
results may be obtained, but the search takes longer and
the degree of possible improvement diminishes There is no
point increasing H and L indefinitely since both are lim-
ited by the scratchpad size C,q,. We set these values to
10 on the grounds that increases beyond 10 do not produce
an improvement. Increasing W results in more start points
being considered. We have found that the score heuristic
is always able to identify the best start point within a win-
dow of 5 possibilities for the programs considered. Thus,
the settings provide a sufficient search depth for the exper-
iment.

For each of our test programs (Table 6), we calculated
the WCET in four different configurations (Table 7) us-
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Constant | Value
H 10
L 10
w 5

Table 5. Constants used in evaluation.
These constants control the search depth
(see Figures 5 to 7).

ing IPET. The results are shown in Figure 13 and Ta-
ble 8. An MCGREP-2 CPU with two functional units is
used. For the hybrid configurations, instruction scratch-
pad space was allocated first. These results illustrate that
trace scratchpads should be used in combination with in-
struction scratchpads. This is because machine code is far
more dense than microinstructions in terms of operations
per memory bit, so more of the program can be present in
the scratchpad. However, the results also show that trace
scratchpads can reduce WCET beyond what is possible
with an instruction scratchpad alone.

WCET reductions using a trace scratchpad are depen-
dent on (1) the ILP available in the WC paths in each
program, (2) the trace generator, (3) the CPU microar-
chitecture, and (4) available scratchpad space. We cannot
change the amount of ILP available in each program, and
nor do we have another trace generator, but we can change
the MCGREP-2 CPU architecture and the scratchpad size.
Figure 14 shows the mean computed WCET reduction
achieved by the use of combined scratchpads instead of
an instruction scratchpad, across all programs, and for
various scratchpad sizes and CPU configurations. These
results indicate that greater WCET reductions are possi-
ble by increasing trace scratchpad size, and by increas-
ing the amount of parallelism available within the CPU.
Using 64k scratchpads and a 3 unit MCGREP-2 CPU, a
WCET reduction of 149% over an instruction scratchpad
is achieved for fdct. However, further improvements are
limited by the ILP in software [31].

Name Description

bs Binary search

bubble Bubble sort

cnt Counts non-negative matrix cells
compress Compression program

crc Evaluates a CRC

div Software division

duff Copies an array using Duft’s Device
edn Finite Impulse Response filter (1)
expint Computes exponential integral
fdct Fast discrete cosine transform (DCT)
fibcall Fibonacci calculation

fir Finite Impluse Response filter (2)
insertsort Insertion sort

janne_complex | Nested loops

jfdctint DCT on 8x8 pixel block

matmult Multiplication of 20x20 matrices
ndes Encryption program

ns Multi-dimensional array search

Table 6. Test programs used in evaluation.
All except bubble and div are from the
Mailardalen WCET benchmark set [17].
Where possible, we used the loop con-
straints provided with the benchmarks.

It is important that WCET estimates are tight (close to
the true WCET) to facilitate schedulability analysis [5]. To
test this, we measured the execution time of each program
in the configurations listed in Table 7 using the MCGREP-
2 simulator [36]. The rightmost column of Table 8 shows
the results. The values show that very tight (close to 1.0)
WCET estimates are possible with trace scratchpads, al-
though as in any WCET analysis approach, the estimates
depend on the quality of the behavioral constraints.

7 Related Work

CPUs that dynamically adapt to programs in order
to improve ACET have posed significant challenges for



Program Trace Sp. | WC Exec. in Inst Sp. | WC Exec. in Trace WC WCET
Bits Used | Trace Sp. (%) | Bits Used | Inst. Sp. (%) | Reduction (%) | Tightness
bs 8322 19.2 1472 80.8 6.0 0.978
bubble 12426 89.0 992 11.0 52.0 0.996
cnt 15960 55.2 5952 44.8 53.9 0.856
compress 15504 40.7 16320 29.5 14.5 0.948
crc 14706 55.5 5376 44.5 15.4 0.912
div 15960 64.1 4192 35.9 33.1 0.862
duff 14364 63.9 1568 36.1 36.1 1.000
edn 15390 60.7 16160 39.3 55.4 0.998
expint 15960 56.2 6400 43.8 64.4 0.199
fdct 15732 314 7968 68.6 39.5 1.000
fibcall 9234 72.7 768 27.3 9.0 0.914
fir 16188 55.7 6048 44.3 30.3 0.768
insertsort 15960 79.0 2016 21.0 55.1 0.778
janne_complex 10830 39.2 1152 60.8 6.6 0.960
jfdctint 15960 53.2 10272 46.8 52.0 0.852
matmult 16302 33.8 6976 66.2 45.2 0.839
ndes 13338 16.1 16096 72.2 4.8 0.954
ns 12996 52.8 1792 47.2 60.9 0.939

Table 8. Scratchpad space usage and the proportion of WCET spent in scratchpads for
the combined configuration. Trace WC reduction is the difference between an instruction
scratchpad alone, and instruction and trace scratchpads together (a hybrid configuration).
Tightness is the measured execution time divided by the WCET for the hybrid configuration.

Config. Trace Sp. Size | Inst. Sp. Size
Lines | Bits | Words | Bits
RAM only 0 0 0 0
Inst. Sp. 0 0 512 16384
Trace Sp. 143 | 16302 0 0
Hybrid (both Sp.) | 143 | 16302 | 512 16384

Table 7. Scratchpad configurations for
Figure 13 and Table 8.

WCET analysis because execution times may depend on
execution history. Previous work has created effective
models for caches [2, 10, 18], which are able to make
guarantees about dynamic cache state based on knowl-
edge about execution flow, and thus produce more accu-
rate WCET estimates. But these are not applicable to ev-
ery practical cache design (e.g. pseudo-LRU and random
replacement caches [13]) and must be redesigned for ev-
ery CPU in order to account for interactions with other
CPU components [13], which may themselves depend on
execution history. For example, dynamic branch predic-
tors and some pipelines can also introduce a history de-
pendence [16].

The difficulty of applying IPET to a CPU with such
dynamic adaptation has been previously noted by Wil-
helm [37], citing as an example the increase in problem
complexity when caches are modeled as in [15]. This mo-

tivates combining the low-level modeling capabilities of
abstract interpretation (Al) approaches with constraints-
based reasoning about high-level flow. Heckmann et
al. [13] give examples of the application of this com-
bined approach to analyze the behavior of some CPUs
with dynamic components. Unfortunately, some CPU be-
haviors cannot be effectively modeled due to the possi-
bility of timing anomalies, as identified by Lundqvist and
Stenstrom [16] and subsequently described by Wenzel et
al. [34].

These issues have inspired research into new analysis
approaches, such as probabilistic modeling as described
by Bernat et al. [3], and into predictable architectures that
are simpler to model [8]. Some approaches take a com-
plex CPU and attempt to simplify some parts of it. One
example is VISA, proposed by Anantaraman et al. in [1],
in which the behavior of a program on a complex CPU
is bounded by intermediate deadlines to a known WCET,
based on a simple in-order CPU with a cache. Rochange
and Sainrat [24] limit the operations of a complex CPU
to ensure that basic blocks always have the same execu-
tion time irrespective of execution history, thus eliminating
timing anomalies. However, their CPU cannot exploit ILP
across basic block boundaries, which is known to be a lim-
iting factor [31]. Another approach is to eliminate condi-
tional branches altogether and use predication instead: this
“single path” paradigm was proposed by Puschner [21].

Other approaches begin with predictable hardware.
Scratchpads [20, 29, 33] are an example of the replace-
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Figure 13. Effects of trace and instruction
scratchpads on test program WCETs (cal-
culated using IPET and normalized).

ment of a dynamic CPU component with a static or explic-
itly programmed one that is easier to predict. Instruction
cache locking [9] uses similar principles, but is easier to
implement in some off-the-shelf CPUs which do not pro-
vide scratchpad memory. Trace scratchpads extend these
principles to control other CPU components, such as addi-
tional functional units. The advantage of these approaches
is that IPET-based methods may be used to obtain tight
estimates of the WCET because program execution times
can be statically predicted.

For some programs, it is possible to dispense with a
CPU entirely. In [32], Ward and Audsley propose migra-
tion of Ada software tasks into FPGA hardware to pro-
vide a high speed implementation with predictable timing.
However, this cannot scale to programs of any size. One
possible solution is hardware virtualisation, as described
in [30] by Ullmann ef al., where run-time FPGA reconfig-
uration is used to load tasks, but it is not yet clear how well
this will scale to large software-based real-time systems.

8 Conclusion

Our results confirm that instruction scratchpads can
provide substantial WCET reductions without introducing
analysis difficulties. We have shown that this also applies
to trace scratchpads, which can be used to reduce WCETs
even further by optimizing WC paths using traces. We
have also described an IPET-based algorithm to reduce the
WCET of a program, and obtained measurements from a
fully working implementation in various architectural con-
figurations. Trace scratchpads are an architectural solution
for WCET reduction, forming traces to speed up WC paths
as a post compilation step (as opposed to a process ap-
plied during compilation, e.g. [38]). They are thus able to
address the two issues of CPU timing predictability and
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Figure 14. Effects of architectural varia-
tions on the WCET reduction achieved by
using both types of scratchpad in place
of an instruction scratchpad alone. Each
data point is the mean reduction across
all test programs, and is computed by di-
viding the instruction scratchpad WCET
by the hybrid scratchpad WCET for that
program in that architecture.

program WCET reduction at the same time.

Our results could be improved by optimization of the
implementations used. Currently up to 32 extra clock cy-
cles are needed for each trace execution, depending on
the number of registers updated, and whether the trace re-
turns to machine code or restarts itself after execution. It
is known that instruction scratchpad performance can sur-
pass that of an instruction cache [14], and so it is possible
that the most efficient trace scratchpad implementations
could surpass the performance of a trace cache (as fea-
tured in the Pentium 4), but with fully predictable opera-
tion and reduced hardware complexity. Trace caches are
dynamically updated by the CPU: trace scratchpads shift
this feature into software. Trace scratchpads are an inva-
sive technology that cannot be easily retrofitted onto an
existing CPU, but as MCGREP demonstrates [35], FPGA-
based soft core CPUs can make use of the feature and can
be compatible with existing ISAs.

This paper has not considered updating scratchpad con-
tents at runtime, but previous work [14,27] indicates that
this can be beneficial for instruction scratchpads. There-
fore, it is reasonable to expect it will also be beneficial for
trace scratchpads, and could allow this approach to WCET
reduction to be applied to programs of any size.
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