
Appendix A

Digital Appendix Documentation

This appendix refers to the software in the companion data archive bundled with this thesis. If this

copy of the thesis does not include this archive, it can be downloaded from the following location:

http://www.jwhitham.org.uk/thesis/

The layout of this appendix is as follows:

• Section A.1 is an overview of the programs in the archive.

• Additional software required (or recommended) for use with the archive is listed in section

A.2.

• General installation advice is given in section A.3.

• Sections A.4 to A.12 describe the programs in the archive: see section A.1 for an overview.

• The third party software included in the distribution is discussed in section A.13.

A.1 Overview

The software archive is a collection of research programs implementing the experiments in chap-

ters 5 to 8. There is no integrated development environment (IDE). Instead, the programs of the

Appendix are organised into separate projects, as illustrated in Figure A.1. The projects are:

• /mcgrep1: experiments from chapter 5 including the MCGREP-1 CPU generator. These

programs are described in sections A.4 to A.6.

• /testcases: source code for the MCGREP-2 experiments in section 6.4. The programs are

described in section A.7. Benchmark code is written in C, with a test infrastructure written in

Python.

• /mcgrep2-src: the MCGREP-2 CPU generator, simulator, and tools for compiling and

debugging programs, as described in chapter 6. These programs are described in sections

A.8 to A.10, and are written in Python. C and VHDL templates are used for code generation.

• /tracegen: the trace generator, which is written in C. The trace generator reads trace in-

formation from machine code and generates a suitable microprogram. It is specialised at

compile time for one MCGREP-2 CPU via the microprogramming API (section 6.2.4). The

277

A.1. Overview

Simulator
mcgrep_simulator.py

Hardware
Generator

mcgrep_make_vhdl.py

Microprogram
API Maker

mcgrep_make_api.py

Test Builder
mcgrep_testmaker.py

MCGREP-2 CPU Generator

Architecture Interface
MCGREP-2 CPU Core Project

/mcgrep2-src/mcgrep
/mcgrep2-src/scripts

Microblaze ISA
Emulation

microblaze

ORBIS32 ISA
Emulation

openrisc

Architectures
/mcgrep2-src/mcgrep/architectures

MCGREP-2 CPU Tests

Comparison with OpenRISC Simulator
/mcgrep2-src/scripts/mcgrep_trace_test.py

/testcases/or1kcompare.sh

Simulator/Hardware Compare
/mcgrep2-src/scripts/mcgrep_hardware_test.py

/testcases/hwcompare_openrisc.sh
/testcases/hwcompare_openrisc_trace.sh

FPGA Test System
/mcgrep2-src/vhdl

VHDL Code
mcgrep.vhdl

Synthesis Tool
Xilinx ISE

Test Harness
src/System_Harness.vhd

Boot ROM
src/*_Bootstrap_ROM.s

FPGA Bitfile
ref*.bit

Test
Programs

MIBench
Mediabench

C
 C

om
piler

gcc

FPGA

Microprogram
API

mcgrep2if.c
mcgrep2if.h

WCET Reduction Algorithms
/wcetreduce

ISA Decoder
isadecode.c

Code Generator
Backend
mcgrepinf.c

Trace
C

om
pactor

sssopt.c

Trace Generator
API

libsss.a, external.h,
useprofile, evaltrace

Abstract
Interpretation
/tracegen/harness.py

Trace Generator Tests
/testcases
/tracegen

Hotspot Marker
Test Tool

/testcases/hskit.py

Test
Programs

MIBench
Mediabench

C Compiler
gcc

Checkpoint
Test Tool

/testcases/debug_assist.py

Trace Analyser
and Tester

evaltrace.py

WCET
Reduction
Algorithm

rtas.py

Solver Interface
lp.py

Configuration
Parameter File

GLPK
Solver

WCET Analysis
(Extended IPET)

rtas.py

T-Graph Builder
graphmaker.py

Experiment
Interface

control.py

Test
Programs

Malardalen WCET
Benchmarks

Developer
Constraints

C
 C

om
piler

gcc Scratchpad
Experiments

shorttest.py

WCET
Reduction

Experiments
wcetrtest.py

Algorithm
Improvement
Experiments

wcetrtest.py

“EPET”
Experiment
experiment2.py

WCET Reduction Experiments
/wcetreduce

Trace Generator
/tracegen

Sections
7.3, 8.4

Section 6.4

Section 6.2

Section 6.2
Appendix D Section 6.4

Section 6.3

Section 7.2

Figure A.1: A map of the software described by chapters 6 through 8, showing file and path names

within the archive.

278

A.2. Required/recommended Software Environment

useprofile and evaltrace tools are used by the experiments described in section 6.3.1

and 7.2.7 respectively.

• /wcetreduce: experiment source code for chapters 7 and 8.

Your programs can use MCGREP-2’s microprogramming features by linking against the trace-

gen library libsss.a built for the MCGREP-2 architecture configuration you wish to use. Sam-

ple usages of the API for direct microprogramming from C can be found in the /tracegen-

/mcgrepinf.c file. You can also rerun the tests used to check MCGREP-2 as described in section

A.12. Some of these tests require an FPGA: information about the required arrangement can be

found in section A.11. Please note that the tests are not all “task safe”: some tests may fail if run in

parallel with each other on the same filesystem, and FPGA access is assumed to be exclusive.

A.2 Required/recommended Software Environment

The archive was prepared on an x86-compatible computer running the Debian Etch Linux distri-

bution. It is also known to be compatible with x86 computers running Slackware Linux version

12.0.0.

In principle, the archive software should be usable on any computer but in practice, some com-

ponents need a Linux-like environment. Support for x86 Linux binaries is required to support the

gcc cross compiler for ORBIS32, although this software can be rebuilt using the bundled source

code (section A.13). A number of additional programs are required for most operations. These

should be provided by the operating system:

• A working gcc installation for the host computer (i.e. a version of gcc that generates native

binaries for the host).

Recommended versions: gcc versions 3.4.6, 4.1.2 and 4.1.3 have been tested.

• A working environment for building C programs (i.e. all header files installed).

Recommended versions: libc6 versions 2.3.6 and 2.6.1 have been tested.

• Python, with support for building C extensions.

Recommended versions: Python 2.4.4 or 2.5.1.

This command could be used on Debian Linux to install the required components:

apt-get install python bzip2 python-dev libc6-dev gcc

The following additional programs are recommended, because they are required by some opera-

tions:

• Xilinx Integrated Software Environment (ISE) for Linux: this is needed if you wish to build

any of the hardware designs. This is non-free software, so it is not distributed with Linux.

Recommended versions: 6.2i is required for building some designs for Spartan-2E FPGAs.

For other devices (Virtex-2, Virtex-4, Spartan-3), 8.1i is recommended. Subsequent versions

are untested.

279

A.3. Installing the Archive Software

• ASL assembler - this is needed if you wish to rebuild any of the T80 control programs (e.g.

the program shown in Figure 5.16). This software is not currently distributed with Debian

Linux.

Recommended versions: 1.42 Beta.

• uDrawGraph - this is needed for viewing .udg graph files which are produced for debugging

and visualisation purposes by some tools. uDrawGraph produces graphs like Figure 5.9. This

is non-free software, so it is not distributed with Linux. It is only used for viewing results.

Recommended versions: 3.1.1.

• pygame - this Python module is needed to use the microprogramming GUI for MCGREP-1

(Figure 5.12). It is not needed for MCGREP-2. This software is available in Debian Linux:

the package name is python-pygame.

Recommended versions: 1.7.1release.

• matplotlib - this Python module generates charts such as Figure 6.19. It is only used for

viewing results. This software is available in Debian Linux: the package name is python--

matplotlib.

Recommended versions: 0.90.1.

• Ghostscript - this is used to convert charts into PNG format for inclusion in the test report

(section A.12). This software is available in Debian Linux: the package name is gs-gpl.

Recommended versions: 8.56.

• ImageMagick - this set of programs is useful for image manipulation. It can be used by the

test software (section A.12) to generate visual image comparisons. This software is available

in Debian Linux: the package name is imagemagick.

Recommended versions: 6.2.4.5.

If your computer is not able to execute x86 Linux programs directly, the easiest way to make use

of the archive is likely to be through a virtual machine, PC emulator, or PC simulator. Such a

program can be used to simulate the architectural environment of a 2008-era PC, allowing you to

install an appropriate x86 version of Linux, perhaps from a CDROM .iso image file. All of the

required programs are part of major Linux distributions such as Debian Etch and Slackware 12,

which are available as free software. You will then be able to work with the archive programs in

an environment that closely replicates the environment used to write them. If the software proves

useful, it should be possible to recompile gcc and other programs for more modern hardware as the

source code is included (section A.13).

A.3 Installing the Archive Software

The archive should be extracted to a directory with at least 1Gb of free space. The software is not

intended to be shared between multiple users, and is not installed using the root system admin-

istrator account. Your home directory is a good place for it. Use the tar command to extract the

archive:

tar xvjf jack-whitham-thesis-sw-dist-2008-xx-yy .tar.bz2

280

A.4. Building the MCGREP-1 Test Cases

Next, cd to the newly created directory, and run the install.sh program. Do not run this program

as root. The software does not install any programs outside of the directory created by tar

and therefore does not require root privileges. (However, the software does create temporary

files in /tmp.) The installation begins by displaying an information message. Press Enter, and

the process will continue. Installation builds various programs and tests the environment on your

computer, checking your version of Python and your C compiler. The correct completion message

is as follows:

Install process complete.

Be sure to source "setup.sh" before you try to run any of the programs.

(See the manual for your shell to learn how to source a script.)

In the Bash shell, you can type the following to source setup.sh:

. setup.sh

Installation will fail if one of the components listed in section A.2 is missing, or if the version you

are using is different in some way to the version that was tested. After a successful installation:

1. Source the setup.sh file to load the correct environment for the software. In this context,

“source” means that the commands in the file should be executed as if they were directly

typed into the shell. This is not the same as running the script, because that will execute the

commands within a child process. Files can be sourced using the . or source command in

Bash.

The script changes the PATH variable, creates a new MCGREP PATH variable, and runs a

Python program to initialise the /tmp directory. setup.sh’s changes are not persistent:

you must repeat this step every time you log in.

2. Optional: If you have the Xilinx ISE tools and you wish to build FPGA hardware designs, you

should edit the xilinx-ise-8.1.sh script in the xilinx-ise subdirectory. This script,

which contains an example, should load the Xilinx settings script for the version of Xilinx

ISE you are using. If you want to build MCGREP-1 designs for the Spartan-2E FPGA, you

must also edit the xilinx-ise-6.2.sh script. Version 6.2 of ISE appears to be required to

build some Spartan-2E designs.

3. Optional: If you have an FPGA and wish to test hardware designs using the MCGREP-

2 software, you should also edit the download-bit.sh script in the xilinx-ise. This

script is executed with the absolute path to an FPGA bit file by tools such as mcgrep -

hardware test.py. It should program an FPGA with this bit file. The tools also expect

the serial-port file to contain the Unix device name of a serial port that can be used to

communicate with the FPGA, e.g. /dev/ttyS0. This may also need to be changed. See

section A.11 for information about the required FPGA connections.

Once all files are installed, refer to sections A.4 through A.13 for information about the programs,

libraries and hardware designs included within the appendix.

A.4 Building the MCGREP-1 Test Cases

To build the MCGREP-1 test cases, move to the test case directory (shown above). The build

program offers the following options:

281

A.5. Using the MCGREP-1 Hardware Generator

Post-installation Configuration Files

� /xilinx-ise

Xilinx ISE/FPGA configuration directory.

MCGREP-1 Test Cases

� /mcgrep1/testcases

Test case directory.

� /mcgrep1/testcases/build

Test case build program.

� /mcgrep1/testcases/bin

Test case output directory for binaries.

• ./build or

Entering this command will build all the test cases for the MCGREP-1 platform. It auto-

matically includes microcode, and patches the program binaries. The resulting programs are

ready to run inside the MCGREP-1 simulator or on the hardware. These programs can be

used to obtain the MCGREP-1 performance figures (section 5.3.6).

• ./build ror

This command builds all the test cases for OpenRISC or MCGREP-1. Microcode is not

included, and the programs only make use of operations supported by both OpenRISC and

MCGREP-1. These programs can be used to obtain the OpenRISC performance figures (sec-

tion 5.3.6).

• ./build aror

This command builds the interference experiment (section 5.3.5). The binary to be used is:

/mcgrep1/testcases/bin/aes.bin

This should be executed on both the MCGREP-1 hardware and the OpenRISC CPU to obtain

a full set of results.

Please note that it is not easy to extend the set of test cases because custom microprograms must

be generated for each one using a manual process (Figure 5.12). To use the microprogramming

GUI, you should use the make ucode.py script in a test case subdirectory, but bear in mind that

the inconvenience of this process was one of the main motivators for the automatic microprogram

generator in MCGREP-2 (chapter 6).

282

A.5. Using the MCGREP-1 Hardware Generator

MCGREP-1 Hardware

� /mcgrep1/hw

Bitfile output directory.

� /mcgrep1/hw/build

Hardware build program.

� /mcgrep1/hw/debug-monitor/mc spartan2e.vhd

MCGREP-1 VHDL file.

� /mcgrep1/hw/debug-monitor/mc virtex2.vhd

MCGREP-1 VHDL file.

MCGREP-1 Simulator

� /mcgrep1/testcases/*/run orig.py

Simulator program.

� /mcgrep1/testcases/*/run accel.py

Simulator program.

A.5 Using the MCGREP-1 Hardware Generator

To build the MCGREP-1 hardware, run the build program listed above. The program requires a

working installation of Xilinx ISE. It builds four bitfiles:

1. mcgrep-eth-burched.bit - MCGREP-1 plus test harness for “BurchEd B5” Spartan-2E

board.

2. mcgrep-eth-virtex.bit - MCGREP-1 plus test harness for “Amadeus” Virtex-2 board.

3. openrisc-burched.bit - OpenRISC OR1200 plus test harness for “BurchEd B5” Spartan-

2E board.

4. openrisc-virtex.bit - OpenRISC OR1200 plus test harness for “Amadeus” Virtex-2

board.

Once the process has completed, you can find the MCGREP-1 VHDL source code in the locations

shown above. This only interacts with external components via the test harness.

The bit files can be downloaded to an appropriate FPGA board for testing. However, the test

harness assumes that the external interface will be compatible with the York RTS Group Virtual

Lab (section A.11). If this interface is not available, you will need to change the top level VHDL

files to implement your own external interface.

A.6 Using the MCGREP-1 Simulator

To use the MCGREP-1 simulator to run a test case, you should use either of the two simulator

programs listed above, which can be found in the subdirectory of each test case. run orig.py runs

283

A.7. Using the MCGREP-2 Test Cases

MCGREP-2 Test Cases

� /testcases

Test case directory.

� /testcases/run through.sh

Builds test cases with and without custom RFU configurations.

Uses checkpoints to compare the execution of each type of build.

� /testcases/or1kcompare.sh

Compares MCGREP-2 execution against the OpenRISC simulator.

MCGREP-2 Hardware Generator

� /mcgrep2-src/scripts/mcgrep make vhdl.py

Standalone VHDL generator.

� /mcgrep2-src/vhdl

Test system build directory.

� /mcgrep2-src/vhdl/build ref hw.sh

Builds the Avnet/Memec MM1 test system used for evaluation in

chapter 6.

a test case in ORBIS32 mode only, without using any custom microprograms, while run accel.py

uses custom microprograms.

You will find that the MCGREP-2 simulator (sections 6.2.5 and A.9) is much faster than the

MCGREP-1 simulator. However, the MCGREP-2 simulator only supports the OpenRISC ORBIS32

and Microblaze ISAs and the MCGREP-2 microprogramming interface. It cannot be used to run

general MCGREP-1 programs because the microcode is not compatible.

A.7 Using the MCGREP-2 Test Cases

The MCGREP-2 test cases are built as part of an integrated experiment environment. They can also

be built using the mcgrep testmaker.py program: the hskit.py program includes examples of

the usage of this program. The experiments are designed to execute unattended and produce results

that are formatted into the tables and charts found in chapter 6.

A.8 Using the MCGREP-2 Hardware Generator

The MCGREP-2 hardware generator can be used in two ways:

• As part of the hardware building system for a supported FPGA, which generates the MCGREP-

2 VHDL and then synthesises it. Currently, the supported FPGA for MCGREP-2 is the

Spartan-3 xc3s400-ft256-4 FPGA on the Avnet/Memec MM1 “mini module” FPGA

board [22] (Figure A.2). The build ref hw program builds a bit file for this FPGA us-

284

A.9. Using the MCGREP-2 Simulator

Figure A.2: Photograph of the MM1 “mini module” FPGA prototyping board, from Avnet/Memec

documentation [22]. The mini module is plugged into the left-hand side of a devel-

opment board that provides a serial port and JTAG interface in addition to a variety

of other components (unused in this application) such as the display on the right-hand

side.

ing Xilinx ISE. The bit file includes the test harness described in section 6.2.2.6. The

build ref core hw program builds the same system minus the test harness: in this con-

figuration, the system is just an MCGREP-2 CPU plus memory and serial port drivers. Bit

files are placed in /mcgrep2-hw along with temporary files produced by Xilinx ISE.

• As a standalone program. The mcgrep make vhdl.py program generates the self-contained

VHDL source of an MCGREP-2 CPU. The program expects to be supplied with the name

of a configuration file which specifies the parameters of the CPU to be generated. Sample

configuration files can be found in /mcgrep2-hw: each has the extension .cfg. Some of the

parameters that are supported are listed in Table A.1. Typically, this program is executed as

follows:

mcgrep make vhdl.py -r mcgrep2-hw -n ref.cfg output.vhdl

This creates the file output.vhdl after reading the configuration file ref.cfg from the

directory mcgrep2-hw.

The default bus used by MCGREP-2 CPUs is Wishbone [190]. However, the generator can

also produce a version of the CPU with an On-chip Peripheral Bus (OPB) connector. If

this is selected, then the output of the generator is a component for the Xilinx Embedded

Development Kit (EDK) with an OPB interface. This component includes several files and is

placed in a new subdirectory for inclusion in EDK, where it can act as a drop-in replacement

for Microblaze if suitably configured (section D).

285

A.9. Using the MCGREP-2 Simulator

Parameter Name Supported Val-
ues

Effect

num units Integer ≥ 1 Sets the total l + m + n for the CPU (Figure

4.5).

hw full debug chain Boolean Synthesise a long debugging chain that in-

cludes all CPU components rather than a sub-

set.

memory latency ≥ 1 Expect the specified memory latency. (Note:

does not affect the latency of RAM accesses

in the simulator - a command-line parameter

is used for that purpose.)

multiply on any unit Boolean Add a multiplier to every functional unit

rather than just the first.

target ”spartan2e”,

”spartan3”

Selects the block RAM driver to be used.

The ”spartan3” selection is also suitable for

Virtex-II and subsequent devices.

arch name ”openrisc”, ”mi-

croblaze”

Selects the ISA of the CPU.

Table A.1: Configuration parameters for the MCGREP-2 hardware generator, tester, and simulator.

MCGREP-2 Simulator

� /mcgrep2-src/scripts/mcgrep simulator.py

Standalone simulator.

� /mcgrep2-src/scripts/mcgrep mcuc test.py

Debugging aid for microprogramming problems.

� /mcgrep2-src/scripts/mcgrep hardware test.py

Compares hardware and simulator execution using debugging

mechanism.

286

A.9. Using the MCGREP-2 Simulator

A.9 Using the MCGREP-2 Simulator

The MCGREP-2 simulator is widely used by test cases and experiments. For example, it is used

to check the correct operation of every test case in /testcases, and it is also used to carry out

the experiments in chapters 6 to 8. Many programs extend the simulator with hooks (section 6.2.5),

so the simulator is executed via Python. However, the simulator can also be executed manually by

running mcgrep simulator.py.

The simulator program uses a configuration file like the one accepted by the hardware generator.

(The same file can be used by both.) The supported parameters are listed in Table A.1. Micropro-

grams are not portable between different configurations of MCGREP-2, so it is important to ensure

that the simulator, the hardware and the code generator all share the same configuration.

The simulator’s debugging switch (-d) causes traces to be emitted at the microprogram level.

This is useful for debugging microprograms. More sophisticated debugging is possible using

mcgrep mcuc test.py, an enhanced version of the simulator which supports the following addi-

tional features:

• --debug-entry: activates debugging after a specific microprogram state has been reached.

This avoids the need to trace all the microinstructions executed before that point.

• --dump to: dumps memory and registers to two files beginning with the specified name

when the simulator exits.

• --rebuild-debugging: keep each successive version of the automatically generated C

components of the simulator.

Adding features to MCGREP-2 CPUs may involve writing both VHDL and C implementations

for each new type of microoperation. This type of extension can be debugged using mcgrep -

hardware test.py, which compares the functionality of the hardware and software models (sec-

tion 6.4.1). This is done through the debugging harness on the embedded system (implemented

by System Harness.vhd), which communicates by a RS232 serial link with the hardware -

test.py program on your workstation. Section A.11 has information about setting up an FPGA

prototyping board to host the embedded system.

A.10 Extending MCGREP-2

The bulk of the MCGREP-2 software is stored within the /mcgrep2-src/mcgrep directory. This

directory is a Python package named mcgrep: if changes are made, it may be necessary to run

install.sh again to update Python.

The parts of MCGREP-2 that are explicitly extensible are found in /mcgrep2-src/mcgrep/-

architectures. The microblaze architecture is derived from the base openrisc architecture.

Many new features can be added by deriving a new architecture from one of these. Each directory

must include a standard set of files which are loaded by the arch module of MCGREP-2. The

architecture to be used is selected by a configuration parameter (Table A.1).

The trace generating software (section 6.3) is not part of MCGREP-2: it communicates with

the MCGREP-2 tools via an interface as shown in Figure 6.7. This software can be found in

/tracegen. The trace generator itself is found in sssopt.c, with the MCGREP-2 interface in

mcgrepinf.c and the machine code interface in isadecode.c.

287

A.11. Connecting an FPGA

The WCET reduction software (section 7.2) is located in /wcetreduce/rtas.py. This code

exposes a variety of interfaces to allow extensions and experiments: usage examples can be found

in /wcetreduce/shorttest.py and /wcetreduce/control.py.

A.11 Connecting an FPGA

Some of the tests and experiments require an FPGA. At present, FPGAs come in a wide variety

of packages on a wide variety of prototyping boards. Although VHDL is standard [17], there is

no universal standard for FPGA hardware or prototyping boards, and each device has different pin

connections and peripherals. Therefore, the components of the work that require an FPGA will

probably need to be changed to meet your requirements.

MCGREP-1 experiments make use of the York RTS Group Virtual Lab. This provides a termi-

nal interface to FPGA hardware, allowing users to send commands to FPGA hardware and see the

results in an applet (Figure 5.16). From the perspective of the T80 CPU that acts as a microcon-

troller for the debugging hardware (section 5.3.1), the 40x25 text display and the serial input are

memory mapped devices. If necessary, the Virtual Lab features can be recreated by replacing these

two devices with the implementations in mcgrep2-src/vhdl/src/generic/vga module.vhd

and mcgrep2-src/vhdl/src/generic/uart module.vhd. This can be done by changing the

mcgrep1/hw/common/monitor bus bridge.vhd module so that bus transactions are sent to

local devices rather than being encoded for the external Virtual Lab interface.

Because of the potential difficulty of reproducing Virtual Lab features in future systems, the

MCGREP-2 experiments and tests use a simple RS232 serial connection to communicate with

an FPGA. The FPGA prototyping board used for the MCGREP-2 tests is the Avnet/Memec MM1

“mini module” (section A.8), but this can be replaced by any prototyping board that provides RS232

line drivers and at least 1Mb of SRAM in addition to a suitable FPGA. To use a different FPGA or

prototyping board with the existing tools, refer to the files in mcgrep2-src/vhdl/boards/ref.

These specify the prototyping board parameters. ref.vhd is the top level VHDL file and should

provide pins for a RS232 serial connection, a clock and SRAM. ref.ucf specifies the pin names.

The other files are used by various parts of the Xilinx synthesis process.

The ref subdirectory can be copied to create an entirely new board target. The build ref hw

script in mcgrep2-src/vhdl should be modified to specify the board directory (NAME) and the

FPGA type (PART). Various other board targets exist in the archive, but not all of these have been

tested.

The MCGREP-2 software does not set the baud rate of the serial connection on the workstation,

so a terminal emulator program must be used to do this. The baud rate expected by the MM1 system

is 57600 bits per second (8 bits per character, no parity, 1 stop bit, no flow control). This can be

changed by modifying the uart divisor parameter of the System component in ref.vhd. The

equation is:

d =
f

64b
(A.1)

where d is the divisor to be rounded to nearest integer, f is the FPGA input clock frequency in

Hz, and b is the baud rate in bits per second. For the MM1 system, f = 100MHz and the divisor

d = 27.

The test programs call the download-bit.sh script in xilinx-ise to send bit files to the

FPGA. This can call any other program to do the work: the Xilinx Impact program is a possibility.

288

A.12. Appendix Software Tests

Appendix Software Tests

� /utils/test

Test case directory.

� /results

Test results directory.

� /regtest

Regression test data.

By default, the script uses the Virtual Lab to download bit files.

A.12 Appendix Software Tests

The tests produce most of the results printed in this thesis. Some tests require the Xilinx tools,

others require an FPGA. The b programs in the test case directory have the following functions:

• b1.py: installation sanity checks. This test is very short.

• b2.py: synthesis tests. All of the tests carried out by this program require Xilinx ISE. This

test takes around 3 hours on a 2008-era PC.

• b3.py: software tests, part 1. MCGREP-1 software is tested, along with some of MCGREP-

2. This test takes around 24 hours.

• b3a.py: software tests, part 2. MCGREP-2 tests are completed, and the WCET reduction

experiments described in chapters 7 and 8 are performed. This test takes around 24 hours.

• b4.py: hardware test. The MCGREP-2 hardware is compared against the simulator in both

machine code and custom RFU execution mode for each benchmark. In this test case, the

trace generator software is executed on the FPGA itself before each benchmark is executed.

Before starting this test, see section A.11. This test takes around 4 hours.

• b6.py: result production. The test results are finalised and a report is produced in /re-

sults/reportcharts.html. This report can be viewed using a Web browser. If the Im-

ageMagick program compare is installed, the generated script /results/reportcharts-

.sh can be executed to generate a visual comparison between the regression test data and the

latest results. This test is very short.

A.13 Third Party Software and Hardware

The archive includes a number of software programs and hardware designs written by others. These

are redistributed under the terms of the GNU General Public License version 2. This licence can be

found in the file named /LICENSE in the root of the archive.

Complete source code for all of the following programs can be found in /3rdparty-sw/src:

289

A.13. Third Party Software and Hardware

• /3rdparty-sw/glpk: the GNU Linear Programming Kit, version 4.22 [100]. This com-

ponent is sourced from the Free Software Foundation website. No modifications have been

made.

• /3rdparty-sw/openrisctools: newlib, gcc and binutils for the OpenRISC OR-

BIS32 ISA [151]. These components are sourced from the Opencores.org website. Some

changes were necessary in order to compile this software: these are present within three

patch files in the src directory.

• /3rdparty-sw/microblazetools: newlib, gcc, libgloss and binutils for the Mi-

croblaze ISA [286]. These components are sourced from Petalogix. Some changes were nec-

essary in order to compile this software: these are present within one patch files in the src

directory.

• /3rdparty-sw/openrisctools: libgloss for the OpenRISC ORBIS32 ISA. This com-

ponent is based on libgloss for Microblaze. It includes modifications to use the simulator

system call interface (section 6.4.1) for access to files on the host workstation.

• /3rdparty-sw/or1ksim: the simulator for ORBIS32. This component is sourced from

the Opencores.org website. No modifications have been made.

• hex2rom: this converts binary files into read-only memory implemented in block RAM. It

has been modified to generate ROMs with a Wishbone bus.

Complete VHDL/Verilog source code for the following third-party hardware designs can be found

in /3rdparty-cores:

• /3rdparty-cores/t80: the T80 CPU [269]. This component is sourced from the Open-

cores.org website.

• /3rdparty-cores/or1200: the OpenRISC CPU [151]. This component is sourced from

the Opencores.org website.

• /3rdparty-cores/mem ctrl: a memory controller from Opencores.org.

Some of the benchmark programs are not licenced under the GNU General Public Licence version

2. In these cases, a file named LICENSE is present in the benchmark source directory detailing the

terms for that specific program. These terms only apply to files in that directory, and have previously

permitted redistribution of the code within MIBench [108] and Mediabench [154].

Finally, the following additional third-party code is used:

• /utils/virtual-python.py: clones an installation of Python. This component is public

domain software.

290

